BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22401126)

  • 1. Layering instability in a confined suspension flow.
    Zurita-Gotor M; Bławzdziewicz J; Wajnryb E
    Phys Rev Lett; 2012 Feb; 108(6):068301. PubMed ID: 22401126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic interactions and the diffusivity of spheroidal particles.
    Marath NK; Wettlaufer JS
    J Chem Phys; 2019 Jul; 151(2):024107. PubMed ID: 31301717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Margination regimes and drainage transition in confined multicomponent suspensions.
    Henríquez Rivera RG; Sinha K; Graham MD
    Phys Rev Lett; 2015 May; 114(18):188101. PubMed ID: 26001019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions.
    Xu B; Gilchrist JF
    J Chem Phys; 2014 May; 140(20):204903. PubMed ID: 24880321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of margination in confined flows of blood and other multicomponent suspensions.
    Kumar A; Graham MD
    Phys Rev Lett; 2012 Sep; 109(10):108102. PubMed ID: 23005332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Globally aligned states and hydrodynamic traffic jams in confined suspensions of active asymmetric particles.
    Lefauve A; Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):021002. PubMed ID: 25353410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of the solid and liquid phases in dilute sheared Brownian suspensions: irreversibility and particle migration.
    Brown JR; Seymour JD; Codd SL; Fridjonsson EO; Cokelet GR; Nydén M
    Phys Rev Lett; 2007 Dec; 99(24):240602. PubMed ID: 18233432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-time self-diffusion coefficient of a particle in a colloidal suspension bounded by a microchannel: virial expansions and simulation.
    Kędzierski M; Wajnryb E
    J Chem Phys; 2011 Oct; 135(16):164104. PubMed ID: 22047225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical onset of layering in sedimenting suspensions of nanoparticles.
    Butenko AV; Nanikashvili PM; Zitoun D; Sloutskin E
    Phys Rev Lett; 2014 May; 112(18):188301. PubMed ID: 24856727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay of particle shape and suspension properties: a study of cube-like particles.
    Audus DJ; Hassan AM; Garboczi EJ; Douglas JF
    Soft Matter; 2015 May; 11(17):3360-6. PubMed ID: 25797369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations.
    Saintillan D; Shelley MJ
    Phys Rev Lett; 2008 May; 100(17):178103. PubMed ID: 18518342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new approach to the studies of submicron particle suspensions based on the effect of pressure in capillary zone electrophoresis.
    Vanifatova N; Rudnev A; Spivakov B
    Electrophoresis; 2013 Aug; 34(15):2145-51. PubMed ID: 23712419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscosity calculation of a nanoparticle suspension confined in nanochannels.
    Wang Y; Keblinski P; Chen Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036313. PubMed ID: 23031019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and dynamics of hydrodynamically interacting finite-size Brownian particles in a spherical cavity: Spheres and cylinders.
    Li J; Jiang X; Singh A; Heinonen OG; Hernández-Ortiz JP; de Pablo JJ
    J Chem Phys; 2020 May; 152(20):204109. PubMed ID: 32486693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.
    Forest MG; Wang Q; Zhou R
    Soft Matter; 2015 Aug; 11(32):6393-402. PubMed ID: 26169540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Film depth and concentration banding in free-surface Couette flow of a suspension.
    Timberlake BD; Morris JF
    Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):895-910. PubMed ID: 12804220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brownian dynamics without Green's functions.
    Delong S; Usabiaga FB; Delgado-Buscalioni R; Griffith BE; Donev A
    J Chem Phys; 2014 Apr; 140(13):134110. PubMed ID: 24712783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic model for the mechanical response of suspensions of sponge-like particles.
    Hütter M; Faber TJ; Wyss HM
    Faraday Discuss; 2012; 158():407-24; discussion 493-522. PubMed ID: 23234177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics in dense hard-sphere colloidal suspensions.
    Orsi D; Fluerasu A; Moussaïd A; Zontone F; Cristofolini L; Madsen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011402. PubMed ID: 22400568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure of Flow-Driven Suspension of Hardspheres in Cylindrical Confinement: A Dynamical Density Functional Theory and Monte Carlo Study.
    Yu HY; Jabeen Z; Eckmann DM; Ayyaswamy PS; Radhakrishnan R
    Langmuir; 2017 Oct; 33(42):11332-11344. PubMed ID: 28810736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.