These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22401127)

  • 1. Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials.
    Yu L; Zunger A
    Phys Rev Lett; 2012 Feb; 108(6):068701. PubMed ID: 22401127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon.
    Bercx M; Sarmadian N; Saniz R; Partoens B; Lamoen D
    Phys Chem Chem Phys; 2016 Jul; 18(30):20542-9. PubMed ID: 27405243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the relationship between ferroelectric and photovoltaic properties in CsGeI
    Chelil N; Sahnoun M; Benhalima Z; Larbi R; Eldin SM
    RSC Adv; 2023 Jan; 13(3):1955-1963. PubMed ID: 36712603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promising photovoltaic efficiency of a layered silicon oxide crystal Si
    Kim S; Chae K; Son YW
    Nanoscale; 2020 Aug; 12(29):15638-15642. PubMed ID: 32692335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning-Aided Band Gap Engineering of BaZrS
    Sharma S; Ward ZD; Bhimani K; Sharma M; Quinton J; Rhone TD; Shi SF; Terrones H; Koratkar N
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):18962-18972. PubMed ID: 37014669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect Band Gap Semiconductors for Thin-Film Photovoltaics: High-Throughput Calculation of Phonon-Assisted Absorption.
    Kangsabanik J; Svendsen MK; Taghizadeh A; Crovetto A; Thygesen KS
    J Am Chem Soc; 2022 Nov; 144(43):19872-19883. PubMed ID: 36270007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The generalized Shockley-Queisser limit for nanostructured solar cells.
    Xu Y; Gong T; Munday JN
    Sci Rep; 2015 Sep; 5():13536. PubMed ID: 26329479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applications.
    Nagoya A; Asahi R; Kresse G
    J Phys Condens Matter; 2011 Oct; 23(40):404203. PubMed ID: 21931185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance-limiting factors for GaAs-based single nanowire photovoltaics.
    Wang X; Khan MR; Lundstrom M; Bermel P
    Opt Express; 2014 Mar; 22 Suppl 2():A344-58. PubMed ID: 24922244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance-limiting factors for GaAs-based single nanowire photovoltaics.
    Wang X; Khan MR; Lundstrom M; Bermel P
    Opt Express; 2014 Mar; 22(5):A344-58. PubMed ID: 24800291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Band gap engineering of FeS2 under biaxial strain: a first principles study.
    Xiao P; Fan XL; Liu LM; Lau WM
    Phys Chem Chem Phys; 2014 Nov; 16(44):24466-72. PubMed ID: 25308322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Bismuth Triiodide (BiI3) for Photovoltaic Applications.
    Brandt RE; Kurchin RC; Hoye RL; Poindexter JR; Wilson MW; Sulekar S; Lenahan F; Yen PX; Stevanović V; Nino JC; Bawendi MG; Buonassisi T
    J Phys Chem Lett; 2015 Nov; 6(21):4297-302. PubMed ID: 26538045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonics for Photovoltaics: Advances and Opportunities.
    Garnett EC; Ehrler B; Polman A; Alarcon-Llado E
    ACS Photonics; 2021 Jan; 8(1):61-70. PubMed ID: 33506072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum Theoretical Efficiency Limit of Photovoltaic Devices: Effect of Band Structure on Excited State Entropy.
    Osterloh FE
    J Phys Chem Lett; 2014 Oct; 5(19):3354-9. PubMed ID: 26278444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling potential photovoltaic absorbers Cu3MCh4(M = V, Nb, Ta; Ch = S, Se, Te) using density functional theory.
    Kehoe AB; Scanlon DO; Watson GW
    J Phys Condens Matter; 2016 May; 28(17):175801. PubMed ID: 27033972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-Principle Calculation of High Absorption-TlGaTe
    Rasukkannu M; Velauthapillai D; Vajeeston P
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31443336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley-Queisser Limit.
    Mann SA; Grote RR; Osgood RM; Alù A; Garnett EC
    ACS Nano; 2016 Sep; 10(9):8620-31. PubMed ID: 27580421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards improved photovoltaic conversion using dilute magnetic semiconductors (abstract only).
    Olsson P; Guillemoles JF; Domain C
    J Phys Condens Matter; 2008 Feb; 20(6):064226. PubMed ID: 21693888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical Investigation of Delafossite-Cu
    Kang SH; Kang M; Hwang SW; Yeom S; Yoon M; Ok JM; Yoon S
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.