These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22401212)

  • 1. Breakup of liquid filaments.
    Castrejón-Pita AA; Castrejón-Pita JR; Hutchings IM
    Phys Rev Lett; 2012 Feb; 108(7):074506. PubMed ID: 22401212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breakup of finite-size liquid filaments: Transition from no-breakup to breakup including substrate effects
    Dziedzic A; Nakrani M; Ezra B; Syed M; Popinet S; Afkhami S
    Eur Phys J E Soft Matter; 2019 Feb; 42(2):18. PubMed ID: 30788688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plethora of transitions during breakup of liquid filaments.
    Castrejón-Pita JR; Castrejón-Pita AA; Thete SS; Sambath K; Hutchings IM; Hinch J; Lister JR; Basaran OA
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4582-7. PubMed ID: 25825761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of soluble surfactants on the deformation and breakup of stretching liquid bridges.
    Liao YC; Subramani HJ; Franses EI; Basaran OA
    Langmuir; 2004 Nov; 20(23):9926-30. PubMed ID: 15518476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental validation of a numerical model for predicting the trajectory of blood drops in typical crime scene conditions, including droplet deformation and breakup, with a study of the effect of indoor air currents and wind on typical spatter drop trajectories.
    Kabaliuk N; Jermy MC; Williams E; Laber TL; Taylor MC
    Forensic Sci Int; 2014 Dec; 245():107-20. PubMed ID: 25447183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets.
    Castillo-Orozco E; Davanlou A; Choudhury PK; Kumar R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053022. PubMed ID: 26651794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions.
    Golemanov K; Tcholakova S; Denkov ND; Ananthapadmanabhan KP; Lips A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051405. PubMed ID: 19113128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of soluble surfactants on pinch-off of moderately viscous drops and satellite size.
    Kovalchuk NM; Jenkinson H; Miller R; Simmons MJH
    J Colloid Interface Sci; 2018 Apr; 516():182-191. PubMed ID: 29408104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thick drops on a slowly oscillating substrate.
    Benilov ES; Cummins CP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023013. PubMed ID: 24032930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical parameters for the partial coalescence of a droplet.
    Gilet T; Mulleners K; Lecomte JP; Vandewalle N; Dorbolo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036303. PubMed ID: 17500787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of Growth and Breakup of Viscous Pendant Drops into Air.
    Zhang X
    J Colloid Interface Sci; 1999 Apr; 212(1):107-122. PubMed ID: 10072280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistence of memory in drop breakup: the breakdown of universality.
    Doshi P; Cohen I; Zhang WW; Siegel M; Howell P; Basaran OA; Nagel SR
    Science; 2003 Nov; 302(5648):1185-8. PubMed ID: 14615531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary breakup of discontinuously rate thickening suspensions.
    Zimoch PJ; McKinley GH; Hosoi AE
    Phys Rev Lett; 2013 Jul; 111(3):036001. PubMed ID: 23909338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Draining Collars and Lenses in Liquid-Lined Vertical Tubes.
    Jensen OE
    J Colloid Interface Sci; 2000 Jan; 221(1):38-49. PubMed ID: 10623450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spreading, pinching, and coalescence: the Ohnesorge units.
    Fardin MA; Hautefeuille M; Sharma V
    Soft Matter; 2022 May; 18(17):3291-3303. PubMed ID: 35416235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion of deformable drops through granular media and other confined geometries.
    Davis RH; Zinchenko AZ
    J Colloid Interface Sci; 2009 Jun; 334(2):113-23. PubMed ID: 19406427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breakup of a supported drop of a viscous conducting liquid in a uniform electric field.
    Higuera FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016314. PubMed ID: 18764057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tip streaming from a drop in the presence of surfactants.
    Eggleton CD; Tsai TM; Stebe KJ
    Phys Rev Lett; 2001 Jul; 87(4):048302. PubMed ID: 11461649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces.
    Christov NC; Danov KD; Danova DK; Kralchevsky PA
    Langmuir; 2008 Feb; 24(4):1397-410. PubMed ID: 17963414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.