BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22401299)

  • 1. Bio serves nano: biological light-harvesting complex as energy donor for semiconductor quantum dots.
    Werwie M; Xu X; Haase M; Basché T; Paulsen H
    Langmuir; 2012 Apr; 28(13):5810-8. PubMed ID: 22401299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-harvesting chlorophyll protein (LHCII) drives electron transfer in semiconductor nanocrystals.
    Werwie M; Dworak L; Bottin A; Mayer L; Basché T; Wachtveitl J; Paulsen H
    Biochim Biophys Acta Bioenerg; 2018 Mar; 1859(3):174-181. PubMed ID: 29247606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots.
    Zhang W; Chen G; Wang J; Ye BC; Zhong X
    Inorg Chem; 2009 Oct; 48(20):9723-31. PubMed ID: 19772326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoenhancement of lifetimes in CdSe/ZnS and CdTe quantum dot-dopamine conjugates.
    Cooper DR; Suffern D; Carlini L; Clarke SJ; Parbhoo R; Bradforth SE; Nadeau JL
    Phys Chem Chem Phys; 2009 Jun; 11(21):4298-310. PubMed ID: 19458832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy transfer between surface-immobilized light-harvesting chlorophyll a/b complex (LHCII) studied by surface plasmon field-enhanced fluorescence spectroscopy (SPFS).
    Lauterbach R; Liu J; Knoll W; Paulsen H
    Langmuir; 2010 Nov; 26(22):17315-21. PubMed ID: 20964348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatible Ni-doped CdSe/ZnS semiconductor nanocrystals for cellular imaging and sorting.
    Vyshnava SS; Pandluru G; Kumar KD; Panjala SP; Paramasivam K; Banapuram S; Anupalli RR; Dowlatabad MR
    Luminescence; 2022 Mar; 37(3):490-499. PubMed ID: 35048508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex Förster energy transfer interactions between semiconductor quantum dots and a redox-active osmium assembly.
    Stewart MH; Huston AL; Scott AM; Efros AL; Melinger JS; Gemmill KB; Trammell SA; Blanco-Canosa JB; Dawson PE; Medintz IL
    ACS Nano; 2012 Jun; 6(6):5330-47. PubMed ID: 22671940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ratiometric CdSe/ZnS quantum dot protein sensor.
    Tyrakowski CM; Snee PT
    Anal Chem; 2014 Mar; 86(5):2380-6. PubMed ID: 24506832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling of different isolated photosynthetic light harvesting complexes and CdSe/ZnS nanocrystals via Förster resonance energy transfer.
    Schmitt FJ; Maksimov EG; Hätti P; Weißenborn J; Jeyasangar V; Razjivin AP; Paschenko VZ; Friedrich T; Renger G
    Biochim Biophys Acta; 2012 Aug; 1817(8):1461-70. PubMed ID: 22503663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between redox complexes and semiconductor quantum dots coupled via a peptide bridge.
    Medintz IL; Pons T; Trammell SA; Grimes AF; English DS; Blanco-Canosa JB; Dawson PE; Mattoussi H
    J Am Chem Soc; 2008 Dec; 130(49):16745-56. PubMed ID: 19049466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalized CdSe/ZnS QDs for the detection of nitroaromatic or RDX explosives.
    Freeman R; Finder T; Bahshi L; Gill R; Willner I
    Adv Mater; 2012 Dec; 24(48):6416-21. PubMed ID: 23008159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling charge separation and recombination rates in CdSe/ZnS type I core-shell quantum dots by shell thicknesses.
    Zhu H; Song N; Lian T
    J Am Chem Soc; 2010 Oct; 132(42):15038-45. PubMed ID: 20925344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-photon-induced Förster resonance energy transfer in a hybrid material engineered from quantum dots and bacteriorhodopsin.
    Krivenkov V; Samokhvalov P; Solovyeva D; Bilan R; Chistyakov A; Nabiev I
    Opt Lett; 2015 Apr; 40(7):1440-3. PubMed ID: 25831354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CdTe/ZnS quantum dots as fluorescent probes for ammonium determination.
    Yi KY
    Luminescence; 2016 Jun; 31(4):952-7. PubMed ID: 26542194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CdSe/ZnS quantum dots conjugated with a fluorescein derivative: a FRET-based pH sensor for physiological alkaline conditions.
    Kurabayashi T; Funaki N; Fukuda T; Akiyama S; Suzuki M
    Anal Sci; 2014; 30(5):545-50. PubMed ID: 24813952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emission transformation in CdSe/ZnS quantum dots conjugated to biomolecules.
    Torchynska TV; Polupan G; Vega Macotela LG
    J Photochem Photobiol B; 2017 May; 170():309-313. PubMed ID: 28477576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum dots acting as energy acceptors with organic dyes as donors in solution.
    Xu H; Huang X; Zhang W; Chen G; Zhu W; Zhong X
    Chemphyschem; 2010 Oct; 11(14):3167-71. PubMed ID: 20872922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent probe for detection of Cu2+ using core-shell CdTe/ZnS quantum dots.
    Bian W; Wang F; Zhang H; Zhang L; Wang L; Shuang S
    Luminescence; 2015 Nov; 30(7):1064-70. PubMed ID: 25703392
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.