These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 22401494)
1. Interaction of tau protein with model lipid membranes induces tau structural compaction and membrane disruption. Jones EM; Dubey M; Camp PJ; Vernon BC; Biernat J; Mandelkow E; Majewski J; Chi EY Biochemistry; 2012 Mar; 51(12):2539-50. PubMed ID: 22401494 [TBL] [Abstract][Full Text] [Related]
2. Lipid membrane templated misfolding and self-assembly of intrinsically disordered tau protein. Majewski J; Jones EM; Vander Zanden CM; Biernat J; Mandelkow E; Chi EY Sci Rep; 2020 Aug; 10(1):13324. PubMed ID: 32770092 [TBL] [Abstract][Full Text] [Related]
3. Tau binds to lipid membrane surfaces via short amphipathic helices located in its microtubule-binding repeats. Georgieva ER; Xiao S; Borbat PP; Freed JH; Eliezer D Biophys J; 2014 Sep; 107(6):1441-52. PubMed ID: 25229151 [TBL] [Abstract][Full Text] [Related]
4. Interaction of full-length Tau with negatively charged lipid membranes leads to polymorphic aggregates. Ury-Thiery V; Fichou Y; Alves I; Molinari M; Lecomte S; Feuillie C Nanoscale; 2024 Sep; 16(36):17141-17153. PubMed ID: 39189914 [TBL] [Abstract][Full Text] [Related]
5. Reversible Cation-Selective Attachment and Self-Assembly of Human Tau on Supported Brain Lipid Membranes. Mari SA; Wegmann S; Tepper K; Hyman BT; Mandelkow EM; Mandelkow E; Müller DJ Nano Lett; 2018 May; 18(5):3271-3281. PubMed ID: 29644863 [TBL] [Abstract][Full Text] [Related]
6. Membrane-mediated fibrillation and toxicity of the tau hexapeptide PHF6. Fanni AM; Vander Zanden CM; Majewska PV; Majewski J; Chi EY J Biol Chem; 2019 Oct; 294(42):15304-15317. PubMed ID: 31439664 [TBL] [Abstract][Full Text] [Related]
7. Lipid membrane templates the ordering and induces the fibrillogenesis of Alzheimer's disease amyloid-beta peptide. Chi EY; Ege C; Winans A; Majewski J; Wu G; Kjaer K; Lee KY Proteins; 2008 Jul; 72(1):1-24. PubMed ID: 18186465 [TBL] [Abstract][Full Text] [Related]
8. The role of the lipid bilayer in tau aggregation. Elbaum-Garfinkle S; Ramlall T; Rhoades E Biophys J; 2010 Jun; 98(11):2722-30. PubMed ID: 20513417 [TBL] [Abstract][Full Text] [Related]
9. Isothermal titration calorimetry and vesicle leakage assays highlight the differential behaviors of tau repeat segments upon interaction with anionic lipid membranes. Dicke SS; Tatge L; Engen PE; Culp M; Masterson LR Biochem Biophys Res Commun; 2017 Dec; 493(4):1504-1509. PubMed ID: 28986260 [TBL] [Abstract][Full Text] [Related]
10. Binding of the three-repeat domain of tau to phospholipid membranes induces an aggregated-like state of the protein. Künze G; Barré P; Scheidt HA; Thomas L; Eliezer D; Huster D Biochim Biophys Acta; 2012 Sep; 1818(9):2302-13. PubMed ID: 22521809 [TBL] [Abstract][Full Text] [Related]
11. Integration of ganglioside GT1b receptor into DPPE and DPPC phospholipid monolayers: an X-ray reflectivity and grazing-incidence diffraction study. Miller CE; Busath DD; Strongin B; Majewski J Biophys J; 2008 Oct; 95(7):3278-86. PubMed ID: 18599631 [TBL] [Abstract][Full Text] [Related]
12. Equilibrium or quenched: fundamental differences between lipid monolayers, supported bilayers, and membranes. Watkins EB; Miller CE; Liao WP; Kuhl TL ACS Nano; 2014 Apr; 8(4):3181-91. PubMed ID: 24601564 [TBL] [Abstract][Full Text] [Related]
13. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
14. Interaction of the Antimicrobial Peptide Aurein 1.2 and Charged Lipid Bilayer. Rai DK; Qian S Sci Rep; 2017 Jun; 7(1):3719. PubMed ID: 28623332 [TBL] [Abstract][Full Text] [Related]
15. The effect of lipid composition on the dynamics of tau fibrils. Chowdhury UD; Paul A; Bhargava BL Proteins; 2022 Dec; 90(12):2103-2115. PubMed ID: 35869787 [TBL] [Abstract][Full Text] [Related]
17. Neutron Scattering Studies of the Interplay of Amyloid β Peptide(1-40) and An Anionic Lipid 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol. Rai DK; Sharma VK; Anunciado D; O'Neill H; Mamontov E; Urban V; Heller WT; Qian S Sci Rep; 2016 Aug; 6():30983. PubMed ID: 27503057 [TBL] [Abstract][Full Text] [Related]
18. Phosphorylation-mimicking glutamate clusters in the proline-rich region are sufficient to simulate the functional deficiencies of hyperphosphorylated tau protein. Eidenmüller J; Fath T; Maas T; Pool M; Sontag E; Brandt R Biochem J; 2001 Aug; 357(Pt 3):759-67. PubMed ID: 11463346 [TBL] [Abstract][Full Text] [Related]
19. Distinct lipid membrane-mediated pathways of Tau assembly revealed by single-molecule analysis. Yao QQ; Wen J; Perrett S; Wu S Nanoscale; 2022 Mar; 14(12):4604-4613. PubMed ID: 35260870 [TBL] [Abstract][Full Text] [Related]
20. Insertion of TAT peptide and perturbation of negatively charged model phospholipid bilayer revealed by neutron diffraction. Chen X; Sa'adedin F; Deme B; Rao P; Bradshaw J Biochim Biophys Acta; 2013 Aug; 1828(8):1982-8. PubMed ID: 23643891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]