BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

920 related articles for article (PubMed ID: 22401777)

  • 1. An extension of hypotheses regarding rapid-acting, treatment-refractory, and conventional antidepressant activity of dextromethorphan and dextrorphan.
    Lauterbach EC
    Med Hypotheses; 2012 Jun; 78(6):693-702. PubMed ID: 22401777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dextromethorphan as a potential rapid-acting antidepressant.
    Lauterbach EC
    Med Hypotheses; 2011 May; 76(5):717-9. PubMed ID: 21367535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment Resistant Depression with Loss of Antidepressant Response: Rapid-Acting Antidepressant Action of Dextromethorphan, A Possible Treatment Bridging Molecule.
    Lauterbach EC
    Psychopharmacol Bull; 2016 Aug; 46(2):53-58. PubMed ID: 27738380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of AMPA receptors in the antidepressant-like effects of dextromethorphan in mice.
    Nguyen L; Matsumoto RR
    Behav Brain Res; 2015 Dec; 295():26-34. PubMed ID: 25804358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-methyl-D-aspartate (NMDA) antagonists--S(+)-ketamine, dextrorphan, and dextromethorphan--act as calcium antagonists on bovine cerebral arteries.
    Kamel IR; Wendling WW; Chen D; Wendling KS; Harakal C; Carlsson C
    J Neurosurg Anesthesiol; 2008 Oct; 20(4):241-8. PubMed ID: 18812887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of dimemorfan to sigma-1 receptor and its anticonvulsant and locomotor effects in mice, compared with dextromethorphan and dextrorphan.
    Chou YC; Liao JF; Chang WY; Lin MF; Chen CF
    Brain Res; 1999 Mar; 821(2):516-9. PubMed ID: 10064839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dextromethorphan as a potential neuroprotective agent with unique mechanisms of action.
    Werling LL; Lauterbach EC; Calef U
    Neurologist; 2007 Sep; 13(5):272-93. PubMed ID: 17848867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacology of dextromethorphan: Relevance to dextromethorphan/quinidine (Nuedexta®) clinical use.
    Taylor CP; Traynelis SF; Siffert J; Pope LE; Matsumoto RR
    Pharmacol Ther; 2016 Aug; 164():170-82. PubMed ID: 27139517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methoxetamine: from drug of abuse to rapid-acting antidepressant.
    Coppola M; Mondola R
    Med Hypotheses; 2012 Oct; 79(4):504-7. PubMed ID: 22819129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of sigma-1 receptors in the antidepressant-like effects of dextromethorphan.
    Nguyen L; Robson MJ; Healy JR; Scandinaro AL; Matsumoto RR
    PLoS One; 2014; 9(2):e89985. PubMed ID: 24587167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dextrorphan and levorphanol selectively block N-methyl-D-aspartate receptor-mediated neurotoxicity on cortical neurons.
    Choi DW; Peters S; Viseskul V
    J Pharmacol Exp Ther; 1987 Aug; 242(2):713-20. PubMed ID: 3039122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ketamine: The final frontier or another depressing end?
    Sial OK; Parise EM; Parise LF; Gnecco T; Bolaños-Guzmán CA
    Behav Brain Res; 2020 Apr; 383():112508. PubMed ID: 32017978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Antidepressant effect of ketamine, a N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, in the therapy of treatment-resistant depression].
    Gosek P; Chojnacka M; Bieńkowski P; Swiecicki Ł
    Psychiatr Pol; 2012; 46(2):283-94. PubMed ID: 23214398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discriminative stimulus properties of dextromethorphan in rats.
    Gavend M; Mallaret M; Dematteis M; Baragatti G
    Biomed Pharmacother; 1995; 49(10):456-64. PubMed ID: 8746072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of [3H]MK-801 binding to N-methyl-D-aspartate receptors in cultured rat cerebellar granule neurons and involvement in glutamate-mediated toxicity.
    Berman FW; Murray TF
    J Biochem Toxicol; 1996; 11(5):217-26. PubMed ID: 9110243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The anticonvulsant actions of sigma receptor ligands in the Mg2+-free model of epileptiform activity in rat hippocampal slices.
    Thurgur C; Church J
    Br J Pharmacol; 1998 Jul; 124(5):917-29. PubMed ID: 9692777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dextromethorphan and dextrorphan in rats: common antitussives--different behavioural profiles.
    Dematteis M; Lallement G; Mallaret M
    Fundam Clin Pharmacol; 1998; 12(5):526-37. PubMed ID: 9794151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dextromethorphan attenuates trimethyltin-induced neurotoxicity via sigma1 receptor activation in rats.
    Shin EJ; Nah SY; Chae JS; Bing G; Shin SW; Yen TP; Baek IH; Kim WK; Maurice T; Nabeshima T; Kim HC
    Neurochem Int; 2007 May; 50(6):791-9. PubMed ID: 17386960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-Substituted-3-alkoxy-derivatives of dextromethorphan are functional NMDA receptor antagonists in vivo: Evidence from an NMDA-induced seizure model in rats.
    Witkin JM; Cerne R; Newman AH; Izenwasser S; Smith JL; Tortella FC
    Pharmacol Biochem Behav; 2021 Apr; 203():173154. PubMed ID: 33609599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of ketamine in affective disorders: current evidence of clinical efficacy, limitations of use and pre-clinical evidence on proposed mechanisms of action.
    Naughton M; Clarke G; O'Leary OF; Cryan JF; Dinan TG
    J Affect Disord; 2014 Mar; 156():24-35. PubMed ID: 24388038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.