These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 22401790)
1. Modelling in-stream temperature and dissolved oxygen at sub-daily time steps: an application to the River Kennet, UK. Williams RJ; Boorman DB Sci Total Environ; 2012 Apr; 423():104-10. PubMed ID: 22401790 [TBL] [Abstract][Full Text] [Related]
2. Temporal and small-scale spatial variations of dissolved oxygen in the Rivers Thames, Pang and Kennet, UK. Williams RJ; White C; Harrow ML; Neal C Sci Total Environ; 2000 May; 251-252():497-510. PubMed ID: 10847180 [TBL] [Abstract][Full Text] [Related]
3. Water quality modeling to determine minimum instream flow for fish survival in tidal rivers. Liu WC; Liu SY; Hsu MH; Kuo AY J Environ Manage; 2005 Sep; 76(4):293-308. PubMed ID: 15927355 [TBL] [Abstract][Full Text] [Related]
4. Diurnal and longer term patterns in carbon dioxide and calcite saturation for the River Kennet, south-eastern England. Neal C; Watts C; Williams RJ; Neal M; Hill L; Wickham H Sci Total Environ; 2002 Jan; 282-283():205-31. PubMed ID: 11846071 [TBL] [Abstract][Full Text] [Related]
5. Sewage effluent clean-up reduces phosphorus but not phytoplankton in lowland chalk stream (River Kennet, UK) impacted by water mixing from adjacent canal. Neal C; Martin E; Neal M; Hallett J; Wickham HD; Harman SA; Armstrong LK; Bowes MJ; Wade AJ; Keay D Sci Total Environ; 2010 Oct; 408(22):5306-16. PubMed ID: 20817260 [TBL] [Abstract][Full Text] [Related]
6. Phosphorus concentrations in the River Dun, the Kennet and Avon Canal and the River Kennet, southern England. Neal C; House WA; Jarvie HP; Neal M; Hill L; Wickham H Sci Total Environ; 2005 May; 344(1-3):107-28. PubMed ID: 15907513 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the QUESTOR water quality model using a Fourier amplitude sensitivity test (FAST) for two UK rivers. Deflandre A; Williams RJ; Elorza FJ; Mira J; Boorman DB Sci Total Environ; 2006 May; 360(1-3):290-304. PubMed ID: 16219341 [TBL] [Abstract][Full Text] [Related]
8. On modelling the flow controls on macrophyte and epiphyte dynamics in a lowland permeable catchment: the River Kennet, southern England. Wade AJ; Whitehead PG; Hornberger GM; Snook DL Sci Total Environ; 2002 Jan; 282-283():375-93. PubMed ID: 11846080 [TBL] [Abstract][Full Text] [Related]
9. A decision support system for water quality issues in the Manzanares River (Madrid, Spain). Paredes J; Andreu J; Solera A Sci Total Environ; 2010 May; 408(12):2576-89. PubMed ID: 20303572 [TBL] [Abstract][Full Text] [Related]
10. Impacts of climate change on in-stream nitrogen in a lowland chalk stream: an appraisal of adaptation strategies. Whitehead PG; Wilby RL; Butterfield D; Wade AJ Sci Total Environ; 2006 Jul; 365(1-3):260-73. PubMed ID: 16603230 [TBL] [Abstract][Full Text] [Related]
11. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104 [TBL] [Abstract][Full Text] [Related]
12. Generalized regression neural network-based approach for modelling hourly dissolved oxygen concentration in the Upper Klamath River, Oregon, USA. Heddam S Environ Technol; 2014 Aug; 35(13-16):1650-7. PubMed ID: 24956755 [TBL] [Abstract][Full Text] [Related]
13. Monitoring spatial and temporal variation of dissolved oxygen and water temperature in the Savannah River using a sensor network. Post CJ; Cope MP; Gerard PD; Masto NM; Vine JR; Stiglitz RY; Hallstrom JO; Newman JC; Mikhailova EA Environ Monit Assess; 2018 Apr; 190(5):272. PubMed ID: 29637320 [TBL] [Abstract][Full Text] [Related]
14. Application of QUAL2Kw for water quality modeling and dissolved oxygen control in the river Bagmati. Kannel PR; Lee S; Kanel SR; Lee YS; Ahn KH Environ Monit Assess; 2007 Feb; 125(1-3):201-17. PubMed ID: 16917690 [TBL] [Abstract][Full Text] [Related]
15. Ecological study of river Suswa: modeling DO and BOD. Bhutiani R; Khanna DR Environ Monit Assess; 2007 Feb; 125(1-3):183-95. PubMed ID: 17058010 [TBL] [Abstract][Full Text] [Related]
16. Model development for prediction and mitigation of dissolved oxygen sags in the Athabasca River, Canada. Martin N; McEachern P; Yu T; Zhu DZ Sci Total Environ; 2013 Jan; 443():403-12. PubMed ID: 23202384 [TBL] [Abstract][Full Text] [Related]
17. Nitrate concentrations in river waters of the upper Thames and its tributaries. Neal C; Jarvie HP; Neal M; Hill L; Wickham H Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496 [TBL] [Abstract][Full Text] [Related]
18. Modelling transport and transformation of mercury fractions in heavily contaminated mountain streams by coupling a GIS-based hydrological model with a mercury chemistry model. Lin Y; Larssen T; Vogt RD; Feng X; Zhang H Sci Total Environ; 2011 Oct; 409(21):4596-605. PubMed ID: 21855960 [TBL] [Abstract][Full Text] [Related]
19. A novel application of remote sensing for modelling impacts of tree shading on water quality. Bachiller-Jareno N; Hutchins MG; Bowes MJ; Charlton MB; Orr HG J Environ Manage; 2019 Jan; 230():33-42. PubMed ID: 30265914 [TBL] [Abstract][Full Text] [Related]
20. Concerted diurnal patterns in riverine nutrient concentrations and physical conditions. Scholefield D; Le Goff T; Braven J; Ebdon L; Long T; Butler M Sci Total Environ; 2005 May; 344(1-3):201-10. PubMed ID: 15907518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]