These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 22402158)
1. Mechanical characterization and constitutive modelling of the damage process in rectus sheath. Martins P; Peña E; Jorge RM; Santos A; Santos L; Mascarenhas T; Calvo B J Mech Behav Biomed Mater; 2012 Apr; 8():111-22. PubMed ID: 22402158 [TBL] [Abstract][Full Text] [Related]
2. On modelling damage process in vaginal tissue. Calvo B; Peña E; Martins P; Mascarenhas T; Doblaré M; Natal Jorge RM; Ferreira A J Biomech; 2009 Mar; 42(5):642-51. PubMed ID: 19162267 [TBL] [Abstract][Full Text] [Related]
3. Mechanical and histological characterization of the abdominal muscle. A previous step to modelling hernia surgery. Hernández B; Peña E; Pascual G; Rodríguez M; Calvo B; Doblaré M; Bellón JM J Mech Behav Biomed Mater; 2011 Apr; 4(3):392-404. PubMed ID: 21316627 [TBL] [Abstract][Full Text] [Related]
4. Mechanical characterisation of porcine rectus sheath under uniaxial and biaxial tension. Lyons M; Winter DC; Simms CK J Biomech; 2014 Jun; 47(8):1876-84. PubMed ID: 24725440 [TBL] [Abstract][Full Text] [Related]
5. Selective enzymatic removal of elastin and collagen from human abdominal aortas: uniaxial mechanical response and constitutive modeling. Schriefl AJ; Schmidt T; Balzani D; Sommer G; Holzapfel GA Acta Biomater; 2015 Apr; 17():125-36. PubMed ID: 25623592 [TBL] [Abstract][Full Text] [Related]
6. Uniaxial and biaxial mechanical properties of porcine linea alba. Cooney GM; Moerman KM; Takaza M; Winter DC; Simms CK J Mech Behav Biomed Mater; 2015 Jan; 41():68-82. PubMed ID: 25460404 [TBL] [Abstract][Full Text] [Related]
7. Characterisation of human posterior rectus sheath reveals mechanical and structural anisotropy. Whitehead-Clarke T; Brown C; Ail G; Mudera V; Smith C; Kureshi A Clin Biomech (Bristol); 2023 Jun; 106():105989. PubMed ID: 37244136 [TBL] [Abstract][Full Text] [Related]
8. Stress softening and permanent deformation in human aortas: Continuum and computational modeling with application to arterial clamping. Fereidoonnezhad B; Naghdabadi R; Holzapfel GA J Mech Behav Biomed Mater; 2016 Aug; 61():600-616. PubMed ID: 27233103 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the anisotropic mechanical behavior of human abdominal wall connective tissues. Astruc L; De Meulaere M; Witz JF; Nováček V; Turquier F; Hoc T; Brieu M J Mech Behav Biomed Mater; 2018 Jun; 82():45-50. PubMed ID: 29567529 [TBL] [Abstract][Full Text] [Related]
10. The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads: a finite element study. Wan C; Hao Z; Wen S J Biomech Eng; 2013 Apr; 135(4):041002. PubMed ID: 24231897 [TBL] [Abstract][Full Text] [Related]
11. Mechanical characterization of the softening behavior of human vaginal tissue. Peña E; Martins P; Mascarenhas T; Natal Jorge RM; Ferreira A; Doblaré M; Calvo B J Mech Behav Biomed Mater; 2011 Apr; 4(3):275-83. PubMed ID: 21316615 [TBL] [Abstract][Full Text] [Related]
12. A structural model of passive skeletal muscle shows two reinforcement processes in resisting deformation. Gindre J; Takaza M; Moerman KM; Simms CK J Mech Behav Biomed Mater; 2013 Jun; 22():84-94. PubMed ID: 23587721 [TBL] [Abstract][Full Text] [Related]
13. Determination of passive viscoelastic response of the abdominal muscle and related constitutive modeling: stress-relaxation behavior. Calvo B; Sierra M; Grasa J; Muñoz MJ; Peña E J Mech Behav Biomed Mater; 2014 Aug; 36():47-58. PubMed ID: 24793173 [TBL] [Abstract][Full Text] [Related]
14. Transversely isotropic material characterization of the human anterior longitudinal ligament. Hortin M; Graham S; Boatwright K; Hyoung P; Bowden A J Mech Behav Biomed Mater; 2015 May; 45():75-82. PubMed ID: 25688029 [TBL] [Abstract][Full Text] [Related]
15. A mesostructurally-based anisotropic continuum model for biological soft tissues--decoupled invariant formulation. Limbert G J Mech Behav Biomed Mater; 2011 Nov; 4(8):1637-57. PubMed ID: 22098866 [TBL] [Abstract][Full Text] [Related]
16. Dependence of anisotropy of human lumbar vertebral trabecular bone on quantitative computed tomography-based apparent density. Aiyangar AK; Vivanco J; Au AG; Anderson PA; Smith EL; Ploeg HL J Biomech Eng; 2014 Sep; 136(9):091003. PubMed ID: 24825322 [TBL] [Abstract][Full Text] [Related]
17. Fibre-matrix interaction in the human annulus fibrosus. Guo Z; Shi X; Peng X; Caner F J Mech Behav Biomed Mater; 2012 Jan; 5(1):193-205. PubMed ID: 22100094 [TBL] [Abstract][Full Text] [Related]
18. Microstructurally-based constitutive modelling of the skin - Linking intrinsic ageing to microstructural parameters. Pond D; McBride AT; Davids LM; Reddy BD; Limbert G J Theor Biol; 2018 May; 444():108-123. PubMed ID: 29407269 [TBL] [Abstract][Full Text] [Related]
19. Implementation of a new constitutive model for abdominal muscles. Tuset L; Fortuny G; Herrero J; Puigjaner D; López JM Comput Methods Programs Biomed; 2019 Oct; 179():104988. PubMed ID: 31443865 [TBL] [Abstract][Full Text] [Related]
20. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament. Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]