BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22402224)

  • 1. The uptake of Cs and Sr from soil to radish (Raphanus sativus L.)- potential for phytoextraction and remediation of contaminated soils.
    Wang D; Wen F; Xu C; Tang Y; Luo X
    J Environ Radioact; 2012 Aug; 110():78-83. PubMed ID: 22402224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil.
    Marchiol L; Assolari S; Sacco P; Zerbi G
    Environ Pollut; 2004 Nov; 132(1):21-7. PubMed ID: 15276270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium accumulation in the edible parts of different cultivars of radish, Raphanus sativus L., and carrot, Daucus carota var. sativa, grown in a Cd-contaminated soil.
    Zheng RL; Li HF; Jiang RF; Zhang FS
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):75-9. PubMed ID: 18392549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil.
    Lin Q; Wang Z; Ma S; Chen Y
    Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Certain antioxidant enzymes and lipid peroxidation of radish (Raphanus sativus L.) as early warning biomarkers of soil copper exposure.
    Sun BY; Kan SH; Zhang YZ; Deng SH; Wu J; Yuan H; Qi H; Yang G; Li L; Zhang XH; Xiao H; Wang YJ; Peng H; Li YW
    J Hazard Mater; 2010 Nov; 183(1-3):833-8. PubMed ID: 20728270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadmium availability and uptake by radish (Raphanus sativus) grown in soils applied with wheat straw or composted pig manure.
    Shan H; Su S; Liu R; Li S
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):15208-17. PubMed ID: 27098882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of genotoxicity and cytotoxicity by radish grown in metal-contaminated soils.
    Villatoro-Pulido M; Font R; De Haro-Bravo MI; Romero-Jiménez M; Anter J; De Haro Bailón A; Alonso-Moraga A; Del Río-Celestino M
    Mutagenesis; 2009 Jan; 24(1):51-7. PubMed ID: 18815122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromium phytotoxicity in radish (Raphanus sativus): effects on metabolism and nutrient uptake.
    Tiwari KK; Singh NK; Rai UN
    Bull Environ Contam Toxicol; 2013 Sep; 91(3):339-44. PubMed ID: 23818061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the uptake of arsenic and antimony from contaminated soil by radish (Raphanus sativus) using DGT and selective extractions.
    Ngo LK; Pinch BM; Bennett WW; Teasdale PR; Jolley DF
    Environ Pollut; 2016 Sep; 216():104-114. PubMed ID: 27239694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of humates and chlorides with cadmium drive soil cadmium chemistry and uptake by radish cultivars.
    Ondrasek G; Romic D; Rengel Z
    Sci Total Environ; 2020 Feb; 702():134887. PubMed ID: 31726343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Chemical forms of cadmium in industrial contaminated soil and its phytoremediation].
    Tie M; Liang Y; Zang S; Pan W; Sun T; Li H
    Ying Yong Sheng Tai Xue Bao; 2006 Feb; 17(2):348-50. PubMed ID: 16706068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of soil type and genotype on cadmium accumulation by rootstalk crops: implications for phytomanagement.
    Ding C; Zhang T; Wang X; Zhou F; Yang Y; Yin Y
    Int J Phytoremediation; 2014; 16(7-12):1018-30. PubMed ID: 24933899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation and its models for organic contaminated soils.
    Gao YZ; Zhu LZ
    J Environ Sci (China); 2003 May; 15(3):302-10. PubMed ID: 12938977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DGT and selective extractions reveal differences in arsenic and antimony uptake by the white icicle radish (Raphanus sativus).
    Ngo LK; Price HL; Bennett WW; Teasdale PR; Jolley DF
    Environ Pollut; 2020 Apr; 259():113815. PubMed ID: 31884210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper and Zn uptake by radish and pakchoi as affected by application of livestock and poultry manures.
    Zhou DM; Hao XZ; Wang YJ; Dong YH; Cang L
    Chemosphere; 2005 Apr; 59(2):167-75. PubMed ID: 15722088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nickel phytoextraction through bacterial inoculation in Raphanus sativus.
    Akhtar MJ; Ullah S; Ahmad I; Rauf A; Nadeem SM; Khan MY; Hussain S; Bulgariu L
    Chemosphere; 2018 Jan; 190():234-242. PubMed ID: 28992475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of a plant uptake model with plant- and site-specific data for uptake of chlorinated organic compounds into radish.
    Trapp S
    Environ Sci Technol; 2015 Jan; 49(1):395-402. PubMed ID: 25426767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of citric acid on phytoextraction potential of Cucurbita pepo, Lagenaria siceraria, and Raphanus sativus plants exposed to multi-metal stress.
    Ibrahim EA
    Sci Rep; 2023 Aug; 13(1):13070. PubMed ID: 37567950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EDTA-Assisted Metal Uptake in Raphanus sativus L. and Brassica oleracea L.: Assessment of Toxicity and Food Safety.
    Chaturvedi R; Favas P; Pratas J; Varun M; Paul MS
    Bull Environ Contam Toxicol; 2019 Sep; 103(3):490-495. PubMed ID: 31222424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential for phytoremediation of polychlorinated biphenyl-(PCB-)contaminated soil.
    Zeeb BA; Amphlett JS; Rutter A; Reimer KJ
    Int J Phytoremediation; 2006; 8(3):199-221. PubMed ID: 17120525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.