BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 22402267)

  • 1. Membrane interactions of two arginine-rich peptides with different cell internalization capacities.
    Walrant A; Vogel A; Correia I; Lequin O; Olausson BE; Desbat B; Sagan S; Alves ID
    Biochim Biophys Acta; 2012 Jul; 1818(7):1755-63. PubMed ID: 22402267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations.
    Witte K; Olausson BE; Walrant A; Alves ID; Vogel A
    Biochim Biophys Acta; 2013 Feb; 1828(2):824-33. PubMed ID: 23174351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides.
    Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID
    Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different membrane behaviour and cellular uptake of three basic arginine-rich peptides.
    Walrant A; Correia I; Jiao CY; Lequin O; Bent EH; Goasdoué N; Lacombe C; Chassaing G; Sagan S; Alves ID
    Biochim Biophys Acta; 2011 Jan; 1808(1):382-93. PubMed ID: 20920465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol re-organisation and lipid de-packing by arginine-rich cell penetrating peptides: Role in membrane translocation.
    Almeida C; Maniti O; Di Pisa M; Swiecicki JM; Ayala-Sanmartin J
    PLoS One; 2019; 14(1):e0210985. PubMed ID: 30673771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons?
    Walrant A; Cardon S; Burlina F; Sagan S
    Acc Chem Res; 2017 Dec; 50(12):2968-2975. PubMed ID: 29172443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligoarginine vectors for intracellular delivery: role of arginine side-chain orientation in chain length-dependent destabilization of lipid membranes.
    Bouchet AM; Lairion F; Ruysschaert JM; Lensink MF
    Chem Phys Lipids; 2012 Jan; 165(1):89-96. PubMed ID: 22119850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide.
    Gonçalves E; Kitas E; Seelig J
    Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The efficacies of cell-penetrating peptides in accumulating in large unilamellar vesicles depend on their ability to form inverted micelles.
    Swiecicki JM; Bartsch A; Tailhades J; Di Pisa M; Heller B; Chassaing G; Mansuy C; Burlina F; Lavielle S
    Chembiochem; 2014 Apr; 15(6):884-91. PubMed ID: 24677480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro Assays: Friends or Foes of Cell-Penetrating Peptides.
    Liu J; Afshar S
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32630650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical Insight on the Membrane Insertion of an Arginine-Rich Cell-Penetrating Peptide.
    Jobin ML; Vamparys L; Deniau R; Grélard A; Mackereth CD; Fuchs PFJ; Alves ID
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31505894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the importance of electrostatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity?
    Jobin ML; Alves ID
    Biochimie; 2014 Dec; 107 Pt A():154-9. PubMed ID: 25107405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent Leakage Assay to Investigate Membrane Destabilization by Cell-Penetrating Peptide.
    Konate K; Seisel Q; Vivès E; Boisguérin P; Deshayes S
    J Vis Exp; 2020 Dec; (166):. PubMed ID: 33393518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell penetrating peptide modulation of membrane biomechanics by Molecular dynamics.
    Grasso G; Muscat S; Rebella M; Morbiducci U; Audenino A; Danani A; Deriu MA
    J Biomech; 2018 May; 73():137-144. PubMed ID: 29631749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and Thermodynamic Insight into Spontaneous Membrane-Translocating Peptides Across Model PC/PG Lipid Bilayers.
    Hu Y; Patel S
    J Membr Biol; 2015 Jun; 248(3):505-15. PubMed ID: 25008278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionpair-π interactions favor cell penetration of arginine/tryptophan-rich cell-penetrating peptides.
    Walrant A; Bauzá A; Girardet C; Alves ID; Lecomte S; Illien F; Cardon S; Chaianantakul N; Pallerla M; Burlina F; Frontera A; Sagan S
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183098. PubMed ID: 31676372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the role of anionic lipids in charged protein interactions with membranes.
    Vorobyov I; Allen TW
    Biochim Biophys Acta; 2011 Jun; 1808(6):1673-83. PubMed ID: 21073855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key Process and Factors Controlling the Direct Translocation of Cell-Penetrating Peptide through Bio-Membrane.
    Sakamoto K; Morishita T; Aburai K; Sakai K; Abe M; Nakase I; Futaki S; Sakai H
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR studies of three-dimensional structure and positioning of CPPs in membrane model systems.
    Mäler L; Gräslund A
    Methods Mol Biol; 2011; 683():57-67. PubMed ID: 21053122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverted micelle formation of cell-penetrating peptide studied by coarse-grained simulation: importance of attractive force between cell-penetrating peptides and lipid head group.
    Kawamoto S; Takasu M; Miyakawa T; Morikawa R; Oda T; Futaki S; Nagao H
    J Chem Phys; 2011 Mar; 134(9):095103. PubMed ID: 21385001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.