These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 22402335)
1. Individualized model of torso surface for the inverse problem of electrocardiology. Lenkova J; Svehlikova J; Tysler M J Electrocardiol; 2012; 45(3):231-6. PubMed ID: 22402335 [TBL] [Abstract][Full Text] [Related]
2. Noninvasive finding of local repolarization changes in the heart using dipole models and simplified torso geometry. Tysler M; Svehlikova J J Electrocardiol; 2013; 46(4):284-8. PubMed ID: 23628317 [TBL] [Abstract][Full Text] [Related]
3. The inverse problem utilizing the boundary element method for a nonstandard female torso. Jamison C; Navarro C; Turner C; Shannon J; Anderson J; Adgey J IEEE Trans Biomed Eng; 2011 Apr; 58(4):876-83. PubMed ID: 21095854 [TBL] [Abstract][Full Text] [Related]
4. Truncated total least squares: a new regularization method for the solution of ECG inverse problems. Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S IEEE Trans Biomed Eng; 2008 Apr; 55(4):1327-35. PubMed ID: 18390323 [TBL] [Abstract][Full Text] [Related]
5. Applicability of the single equivalent moving dipole model in an infinite homogeneous medium to identify cardiac electrical sources: a computer simulation study in a realistic anatomic geometry torso model. Fukuoka Y; Oostendorp TF; Sherman DA; Armoundas AA IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2436-44. PubMed ID: 17153200 [TBL] [Abstract][Full Text] [Related]
6. Estimation of heart-surface potentials using regularized multipole sources. Beetner DG; Arthur RM IEEE Trans Biomed Eng; 2004 Aug; 51(8):1366-73. PubMed ID: 15311821 [TBL] [Abstract][Full Text] [Related]
8. Two hybrid regularization frameworks for solving the electrocardiography inverse problem. Jiang M; Xia L; Shou G; Liu F; Crozier S Phys Med Biol; 2008 Sep; 53(18):5151-64. PubMed ID: 18723934 [TBL] [Abstract][Full Text] [Related]
9. Volume conductor effects involved in the genesis of the P wave. van Dam PM; van Oosterom A Europace; 2005 Sep; 7 Suppl 2():30-8. PubMed ID: 16102501 [TBL] [Abstract][Full Text] [Related]
10. Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem. Jiang M; Xia L; Shou G; Tang M Phys Med Biol; 2007 Mar; 52(5):1277-94. PubMed ID: 17301454 [TBL] [Abstract][Full Text] [Related]
11. Localization of the site of origin of reentrant arrhythmia from body surface potential maps: a model study. Liu C; Li G; He B Phys Med Biol; 2005 Apr; 50(7):1421-32. PubMed ID: 15798333 [TBL] [Abstract][Full Text] [Related]
12. Changes in body-surface electrocardiograms from geometric remodeling with obesity. Arthur RM; Wang S; Trobaugh JW IEEE Trans Biomed Eng; 2011 Jun; 58(6):1565-73. PubMed ID: 21216697 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional myocardial activation imaging in a rabbit model. Liu C; Zhang X; Liu Z; Pogwizd SM; He B IEEE Trans Biomed Eng; 2006 Sep; 53(9):1813-20. PubMed ID: 16941837 [TBL] [Abstract][Full Text] [Related]
14. The localization of focal heart activity via body surface potential measurements: tests in a heterogeneous torso phantom. Wetterling F; Liehr M; Schimpf P; Liu H; Haueisen J Phys Med Biol; 2009 Sep; 54(18):5395-409. PubMed ID: 19700819 [TBL] [Abstract][Full Text] [Related]
15. The effect of torso impedance on epicardial and body surface potentials: a modeling study. Buist ML; Pullan AJ IEEE Trans Biomed Eng; 2003 Jul; 50(7):816-24. PubMed ID: 12848349 [TBL] [Abstract][Full Text] [Related]
16. Accuracy of a single equivalent moving dipole model in a realistic anatomic geometry torso model. Fukuoka Y; Armoundas AA; Oostendorp TF; Cohen RJ Comput Cardiol; 2000; 27():439-42. PubMed ID: 14632014 [TBL] [Abstract][Full Text] [Related]
17. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199 [TBL] [Abstract][Full Text] [Related]
18. Comparison of potential- and activation-based formulations for the inverse problem of electrocardiology. Cheng LK; Bodley JM; Pullan AJ IEEE Trans Biomed Eng; 2003 Jan; 50(1):11-22. PubMed ID: 12617520 [TBL] [Abstract][Full Text] [Related]
19. Cardiac anisotropy: is it negligible regarding noninvasive activation time imaging? Modre R; Seger M; Fischer G; Hintermüller C; Hayn D; Pfeifer B; Hanser F; Schreier G; Tilg B IEEE Trans Biomed Eng; 2006 Apr; 53(4):569-80. PubMed ID: 16602563 [TBL] [Abstract][Full Text] [Related]
20. Boundary element computations in the forward and inverse problems of electrocardiography: comparison of collocation and Galerkin weightings. Stenroos M; Haueisen J IEEE Trans Biomed Eng; 2008 Sep; 55(9):2124-33. PubMed ID: 18713681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]