These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 22402628)
1. Experimental validation of plugging during drop formation in a T-junction. Abate AR; Mary P; van Steijn V; Weitz DA Lab Chip; 2012 Apr; 12(8):1516-21. PubMed ID: 22402628 [TBL] [Abstract][Full Text] [Related]
2. Flow focusing geometry generates droplets through a plug and squeeze mechanism. Romero PA; Abate AR Lab Chip; 2012 Dec; 12(24):5130-2. PubMed ID: 23117576 [TBL] [Abstract][Full Text] [Related]
3. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628 [TBL] [Abstract][Full Text] [Related]
8. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel. Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185 [TBL] [Abstract][Full Text] [Related]
9. Motion of deformable drops through granular media and other confined geometries. Davis RH; Zinchenko AZ J Colloid Interface Sci; 2009 Jun; 334(2):113-23. PubMed ID: 19406427 [TBL] [Abstract][Full Text] [Related]
10. Hydrodynamic resistance of single confined moving drops in rectangular microchannels. Vanapalli SA; Banpurkar AG; van den Ende D; Duits MH; Mugele F Lab Chip; 2009 Apr; 9(7):982-90. PubMed ID: 19294311 [TBL] [Abstract][Full Text] [Related]
11. Modeling of droplet traffic in interconnected microfluidic ladder devices. Song K; Zhang L; Hu G Electrophoresis; 2012 Feb; 33(3):411-8. PubMed ID: 22228275 [TBL] [Abstract][Full Text] [Related]
12. Controlled formation of double-emulsion drops in sudden expansion channels. Kim SH; Kim B J Colloid Interface Sci; 2014 Feb; 415():26-31. PubMed ID: 24267326 [TBL] [Abstract][Full Text] [Related]
13. Impact of inlet channel geometry on microfluidic drop formation. Abate AR; Poitzsch A; Hwang Y; Lee J; Czerwinska J; Weitz DA Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026310. PubMed ID: 19792252 [TBL] [Abstract][Full Text] [Related]
14. Faster multiple emulsification with drop splitting. Abate AR; Weitz DA Lab Chip; 2011 Jun; 11(11):1911-5. PubMed ID: 21505660 [TBL] [Abstract][Full Text] [Related]
15. Formation and stability of nanoparticle-stabilised oil-in-water emulsions in a microfluidic chip. Priest C; Reid MD; Whitby CP J Colloid Interface Sci; 2011 Nov; 363(1):301-6. PubMed ID: 21840529 [TBL] [Abstract][Full Text] [Related]
16. The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces. Christov NC; Danov KD; Danova DK; Kralchevsky PA Langmuir; 2008 Feb; 24(4):1397-410. PubMed ID: 17963414 [TBL] [Abstract][Full Text] [Related]
17. Pressure-driven motion of surfactant-laden drops through cylindrical capillaries: effect of surfactant solubility. Johnson RA; Borhan A J Colloid Interface Sci; 2003 May; 261(2):529-41. PubMed ID: 16256565 [TBL] [Abstract][Full Text] [Related]
18. Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels. Maenaka H; Yamada M; Yasuda M; Seki M Langmuir; 2008 Apr; 24(8):4405-10. PubMed ID: 18327961 [TBL] [Abstract][Full Text] [Related]
19. Controlled generation of submicron emulsion droplets via highly stable tip-streaming mode in microfluidic devices. Jeong WC; Lim JM; Choi JH; Kim JH; Lee YJ; Kim SH; Lee G; Kim JD; Yi GR; Yang SM Lab Chip; 2012 Apr; 12(8):1446-53. PubMed ID: 22402819 [TBL] [Abstract][Full Text] [Related]
20. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows. Yue J; Rebrov EV; Schouten JC Lab Chip; 2014 May; 14(9):1632-49. PubMed ID: 24651271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]