These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22402652)

  • 1. A neuromechanical model explaining forward and backward stepping in the stick insect.
    Tóth TI; Knops S; Daun-Gruhn S
    J Neurophysiol; 2012 Jun; 107(12):3267-80. PubMed ID: 22402652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neuromechanical model for the neuronal basis of curve walking in the stick insect.
    Knops S; Tóth TI; Guschlbauer C; Gruhn M; Daun-Gruhn S
    J Neurophysiol; 2013 Feb; 109(3):679-91. PubMed ID: 23136343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A putative neuronal network controlling the activity of the leg motoneurons of the stick insect.
    Toth TI; Daun-Gruhn S
    Neuroreport; 2011 Dec; 22(18):943-6. PubMed ID: 22089647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity patterns and timing of muscle activity in the forward walking and backward walking stick insect Carausius morosus.
    Rosenbaum P; Wosnitza A; Büschges A; Gruhn M
    J Neurophysiol; 2010 Sep; 104(3):1681-95. PubMed ID: 20668273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
    Akay T; Haehn S; Schmitz J; Büschges A
    J Neurophysiol; 2004 Jul; 92(1):42-51. PubMed ID: 14999042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system.
    Büschges A; Ludwar BCh; Bucher D; Schmidt J; DiCaprio RA
    Eur J Neurosci; 2004 Apr; 19(7):1856-62. PubMed ID: 15078559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of local nonspiking interneurons in the generation of rhythmic motor activity in the stick insect.
    Büschges A
    J Neurobiol; 1995 Aug; 27(4):488-512. PubMed ID: 7561829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A three-leg model producing tetrapod and tripod coordination patterns of ipsilateral legs in the stick insect.
    Tóth TI; Daun-Gruhn S
    J Neurophysiol; 2016 Feb; 115(2):887-906. PubMed ID: 26581871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tonic central and sensory stimuli facilitate involuntary air-stepping in humans.
    Selionov VA; Ivanenko YP; Solopova IA; Gurfinkel VS
    J Neurophysiol; 2009 Jun; 101(6):2847-58. PubMed ID: 19339461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Premotor interneurons in the local control of stepping motor output for the stick insect single middle leg.
    von Uckermann G; Büschges A
    J Neurophysiol; 2009 Sep; 102(3):1956-75. PubMed ID: 19605613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dominance of local sensory signals over inter-segmental effects in a motor system: modeling studies.
    Daun-Gruhn S; Tóth TI; Borgmann A
    Biol Cybern; 2011 Dec; 105(5-6):413-26. PubMed ID: 22290139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interjoint coordination in the stick insect leg-control system: the role of positional signaling.
    Bucher D; Akay T; DiCaprio RA; Buschges A
    J Neurophysiol; 2003 Mar; 89(3):1245-55. PubMed ID: 12626610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibration signals from the FT joint can induce phase transitions in both directions in motoneuron pools of the stick insect walking system.
    Bässler U; Sauer AE; Büschges A
    J Neurobiol; 2003 Aug; 56(2):125-38. PubMed ID: 12838578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensorimotor pathways involved in interjoint reflex action of an insect leg.
    Hess D; Büschges A
    J Neurobiol; 1997 Dec; 33(7):891-913. PubMed ID: 9407012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neuro-mechanical model explaining the physiological role of fast and slow muscle fibres at stop and start of stepping of an insect leg.
    Toth TI; Grabowska M; Schmidt J; Büschges A; Daun-Gruhn S
    PLoS One; 2013; 8(11):e78246. PubMed ID: 24278108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The investigation of control mechanisms of stepping rhythm in human in the air-stepping conditions during passive and voluntary leg movements].
    Solopova IA; Selionon VA; Grishin AA
    Fiziol Cheloveka; 2010; 36(5):83-94. PubMed ID: 21061673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dominance of local sensory signals over inter-segmental effects in a motor system: experiments.
    Borgmann A; Toth TI; Gruhn M; Daun-Gruhn S; Büschges A
    Biol Cybern; 2011 Dec; 105(5-6):399-411. PubMed ID: 22290138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical modeling study of inter-segmental coordination during stick insect walking.
    Daun-Gruhn S
    J Comput Neurosci; 2011 Apr; 30(2):255-78. PubMed ID: 20567889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of flexor motoneuron activity during single leg walking of the stick insect on an electronically controlled treadwheel.
    Gabriel JP; Scharstein H; Schmidt J; Büschges A
    J Neurobiol; 2003 Sep; 56(3):237-51. PubMed ID: 12884263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insect walking is based on a decentralized architecture revealing a simple and robust controller.
    Cruse H; Dürr V; Schmitz J
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):221-50. PubMed ID: 17148058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.