These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 22403177)

  • 1. A segmentation clock with two-segment periodicity in insects.
    Sarrazin AF; Peel AD; Averof M
    Science; 2012 Apr; 336(6079):338-41. PubMed ID: 22403177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Wnt genes are required for segmentation in the short-germ embryo of Tribolium castaneum.
    Bolognesi R; Farzana L; Fischer TD; Brown SJ
    Curr Biol; 2008 Oct; 18(20):1624-9. PubMed ID: 18926702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal control of RNAi reveals both robust and labile feedback loops in the segmentation clock of the red flour beetle.
    Kaufholz F; Ulrich J; Hakeemi MS; Bucher G
    Proc Natl Acad Sci U S A; 2024 Jun; 121(25):e2318229121. PubMed ID: 38865277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A segmentation clock operating in blastoderm and germband stages of Tribolium development.
    El-Sherif E; Averof M; Brown SJ
    Development; 2012 Dec; 139(23):4341-6. PubMed ID: 23095886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Tribolium castaneum whole-embryo culture protocol for studying the molecular mechanisms and morphogenetic movements involved in insect development.
    Macaya CC; Saavedra PE; Cepeda RE; Nuñez VA; Sarrazin AF
    Dev Genes Evol; 2016 Jan; 226(1):53-61. PubMed ID: 26739999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis.
    Palmeirim I; Henrique D; Ish-Horowicz D; Pourquié O
    Cell; 1997 Nov; 91(5):639-48. PubMed ID: 9393857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancer identification and activity evaluation in the red flour beetle,
    Lai YT; Deem KD; Borràs-Castells F; Sambrani N; Rudolf H; Suryamohan K; El-Sherif E; Halfon MS; McKay DJ; Tomoyasu Y
    Development; 2018 Apr; 145(7):. PubMed ID: 29540499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A life-history allele of large effect shortens developmental time in a wild insect population.
    Cheng S; Jacobs CGC; Mogollón Pérez EA; Chen D; van de Sanden JT; Bretscher KM; Verweij F; Bosman JS; Hackmann A; Merks RMH; van den Heuvel J; van der Zee M
    Nat Ecol Evol; 2024 Jan; 8(1):70-82. PubMed ID: 37957313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next generation marker-based vector concepts for rapid and unambiguous identification of single and double homozygous transgenic organisms.
    Strobl F; Ratke J; Krämer F; Utta A; Becker S; Stelzer EHK
    Biol Open; 2023 Oct; 12(10):. PubMed ID: 37855381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How enhancers regulate wavelike gene expression patterns.
    Mau C; Rudolf H; Strobl F; Schmid B; Regensburger T; Palmisano R; Stelzer EHK; Taher L; El-Sherif E
    Elife; 2023 Jul; 12():. PubMed ID: 37432987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A design logic for sequential segmentation across organisms.
    Simsek MF; Özbudak EM
    FEBS J; 2023 Nov; 290(21):5086-5093. PubMed ID: 37422856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistent Parental RNAi in the Beetle
    Horn T; Narov KD; Panfilio KA
    Adv Genet (Hoboken); 2022 Sep; 3(3):2100064. PubMed ID: 36620196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arnold tongue entrainment reveals dynamical principles of the embryonic segmentation clock.
    Sanchez PGL; Mochulska V; Mauffette Denis C; Mönke G; Tomita T; Tsuchida-Straeten N; Petersen Y; Sonnen K; François P; Aulehla A
    Elife; 2022 Oct; 11():. PubMed ID: 36223168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual spherical-shaped multicellular platform for simulating the morphogenetic processes of spider-like body axis formation.
    Fujiwara M; Akiyama-Oda Y; Oda H
    Front Cell Dev Biol; 2022; 10():932814. PubMed ID: 36036016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The organizing role of Wnt signaling pathway during arthropod posterior growth.
    Mundaca-Escobar M; Cepeda RE; Sarrazin AF
    Front Cell Dev Biol; 2022; 10():944673. PubMed ID: 35990604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The red flour beetle T. castaneum: elaborate genetic toolkit and unbiased large scale RNAi screening to study insect biology and evolution.
    Klingler M; Bucher G
    Evodevo; 2022 Jul; 13(1):14. PubMed ID: 35854352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Waves in Embryonic Development.
    Di Talia S; Vergassola M
    Annu Rev Biophys; 2022 May; 51():327-353. PubMed ID: 35119944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extensive loss of Wnt genes in Tardigrada.
    Chavarria RA; Game M; Arbelaez B; Ramnarine C; Snow ZK; Smith FW
    BMC Ecol Evol; 2021 Dec; 21(1):223. PubMed ID: 34961481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signalling dynamics in embryonic development.
    Sonnen KF; Janda CY
    Biochem J; 2021 Dec; 478(23):4045-4070. PubMed ID: 34871368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anterior-posterior patterning of segments in Anopheles stephensi offers insights into the transition from sequential to simultaneous segmentation in holometabolous insects.
    Cheatle Jarvela AM; Trelstad CS; Pick L
    J Exp Zool B Mol Dev Evol; 2023 Mar; 340(2):116-130. PubMed ID: 34734470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.