These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 22403679)
1. Cell-specific DNA methylation patterns of retina-specific genes. Merbs SL; Khan MA; Hackler L; Oliver VF; Wan J; Qian J; Zack DJ PLoS One; 2012; 7(3):e32602. PubMed ID: 22403679 [TBL] [Abstract][Full Text] [Related]
2. The transcription factor GTF2IRD1 regulates the topology and function of photoreceptors by modulating photoreceptor gene expression across the retina. Masuda T; Zhang X; Berlinicke C; Wan J; Yerrabelli A; Conner EA; Kjellstrom S; Bush R; Thorgeirsson SS; Swaroop A; Chen S; Zack DJ J Neurosci; 2014 Nov; 34(46):15356-68. PubMed ID: 25392503 [TBL] [Abstract][Full Text] [Related]
3. A 221-bp fragment of the mouse opsin promoter directs expression specifically to the rod photoreceptors of transgenic mice. Quiambao AB; Peachey NS; Mangini NJ; Röhlich P; Hollyfield JG; al-Ubaidi MR Vis Neurosci; 1997; 14(4):617-25. PubMed ID: 9278991 [TBL] [Abstract][Full Text] [Related]
4. In vivo function of the orphan nuclear receptor NR2E3 in establishing photoreceptor identity during mammalian retinal development. Cheng H; Aleman TS; Cideciyan AV; Khanna R; Jacobson SG; Swaroop A Hum Mol Genet; 2006 Sep; 15(17):2588-602. PubMed ID: 16868010 [TBL] [Abstract][Full Text] [Related]
5. Identification and distribution of photoreceptor subtypes in the neotenic tiger salamander retina. Sherry DM; Bui DD; Degrip WJ Vis Neurosci; 1998; 15(6):1175-87. PubMed ID: 9839981 [TBL] [Abstract][Full Text] [Related]
6. Combinatorial regulation of photoreceptor differentiation factor, neural retina leucine zipper gene NRL, revealed by in vivo promoter analysis. Kautzmann MA; Kim DS; Felder-Schmittbuhl MP; Swaroop A J Biol Chem; 2011 Aug; 286(32):28247-55. PubMed ID: 21673114 [TBL] [Abstract][Full Text] [Related]
7. Does recombinant adeno-associated virus-vectored proximal region of mouse rhodopsin promoter support only rod-type specific expression in vivo? Glushakova LG; Timmers AM; Issa TM; Cortez NG; Pang J; Teusner JT; Hauswirth WW Mol Vis; 2006 Apr; 12():298-309. PubMed ID: 16617297 [TBL] [Abstract][Full Text] [Related]
8. Characterization and allogeneic transplantation of a novel transgenic cone-rich donor mouse line. Liu YV; Teng D; Konar GJ; Agakishiev D; Biggs-Garcia A; Harris-Bookman S; McNally MM; Garzon C; Sastry S; Singh MS Exp Eye Res; 2021 Sep; 210():108715. PubMed ID: 34343570 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome Dynamics of Developing Photoreceptors in Three-Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks. Kaewkhaw R; Kaya KD; Brooks M; Homma K; Zou J; Chaitankar V; Rao M; Swaroop A Stem Cells; 2015 Dec; 33(12):3504-18. PubMed ID: 26235913 [TBL] [Abstract][Full Text] [Related]
10. The human blue opsin promoter directs transgene expression in short-wave cones and bipolar cells in the mouse retina. Chen J; Tucker CL; Woodford B; Szél A; Lem J; Gianella-Borradori A; Simon MI; Bogenmann E Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2611-5. PubMed ID: 8146162 [TBL] [Abstract][Full Text] [Related]
11. A mouse M-opsin monochromat: retinal cone photoreceptors have increased M-opsin expression when S-opsin is knocked out. Daniele LL; Insinna C; Chance R; Wang J; Nikonov SS; Pugh EN Vision Res; 2011 Feb; 51(4):447-58. PubMed ID: 21219924 [TBL] [Abstract][Full Text] [Related]
12. Connexin 36 in photoreceptor cells: studies on transgenic rod-less and cone-less mouse retinas. Dang L; Pulukuri S; Mears AJ; Swaroop A; Reese BE; Sitaramayya A Mol Vis; 2004 May; 10():323-7. PubMed ID: 15152186 [TBL] [Abstract][Full Text] [Related]
13. Expression profiling of the developing and mature Nrl-/- mouse retina: identification of retinal disease candidates and transcriptional regulatory targets of Nrl. Yoshida S; Mears AJ; Friedman JS; Carter T; He S; Oh E; Jing Y; Farjo R; Fleury G; Barlow C; Hero AO; Swaroop A Hum Mol Genet; 2004 Jul; 13(14):1487-503. PubMed ID: 15163632 [TBL] [Abstract][Full Text] [Related]
14. Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow-sorted photoreceptors. Akimoto M; Cheng H; Zhu D; Brzezinski JA; Khanna R; Filippova E; Oh EC; Jing Y; Linares JL; Brooks M; Zareparsi S; Mears AJ; Hero A; Glaser T; Swaroop A Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3890-5. PubMed ID: 16505381 [TBL] [Abstract][Full Text] [Related]
15. Altered expression of genes of the Bmp/Smad and Wnt/calcium signaling pathways in the cone-only Nrl-/- mouse retina, revealed by gene profiling using custom cDNA microarrays. Yu J; He S; Friedman JS; Akimoto M; Ghosh D; Mears AJ; Hicks D; Swaroop A J Biol Chem; 2004 Oct; 279(40):42211-20. PubMed ID: 15292180 [TBL] [Abstract][Full Text] [Related]
17. A typology of photoreceptor gene expression patterns in the mouse. Corbo JC; Myers CA; Lawrence KA; Jadhav AP; Cepko CL Proc Natl Acad Sci U S A; 2007 Jul; 104(29):12069-74. PubMed ID: 17620597 [TBL] [Abstract][Full Text] [Related]
18. Reprogramming of adult rod photoreceptors prevents retinal degeneration. Montana CL; Kolesnikov AV; Shen SQ; Myers CA; Kefalov VJ; Corbo JC Proc Natl Acad Sci U S A; 2013 Jan; 110(5):1732-7. PubMed ID: 23319618 [TBL] [Abstract][Full Text] [Related]
19. Unusual cone and rod properties in subterranean African mole-rats (Rodentia, Bathyergidae). Peichl L; Nemec P; Burda H Eur J Neurosci; 2004 Mar; 19(6):1545-58. PubMed ID: 15066151 [TBL] [Abstract][Full Text] [Related]
20. Excess cones in the retinal degeneration rd7 mouse, caused by the loss of function of orphan nuclear receptor Nr2e3, originate from early-born photoreceptor precursors. Cheng H; Khan NW; Roger JE; Swaroop A Hum Mol Genet; 2011 Nov; 20(21):4102-15. PubMed ID: 21813656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]