These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22403788)

  • 1. Mechanical loading induces the expression of a Pol I regulon at the onset of skeletal muscle hypertrophy.
    von Walden F; Casagrande V; Östlund Farrants AK; Nader GA
    Am J Physiol Cell Physiol; 2012 May; 302(10):C1523-30. PubMed ID: 22403788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mTOR signaling regulates myotube hypertrophy by modulating protein synthesis, rDNA transcription, and chromatin remodeling.
    von Walden F; Liu C; Aurigemma N; Nader GA
    Am J Physiol Cell Physiol; 2016 Oct; 311(4):C663-C672. PubMed ID: 27581648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blunted hypertrophic response in aged skeletal muscle is associated with decreased ribosome biogenesis.
    Kirby TJ; Lee JD; England JH; Chaillou T; Esser KA; McCarthy JJ
    J Appl Physiol (1985); 2015 Aug; 119(4):321-7. PubMed ID: 26048973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. c-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation.
    Poortinga G; Wall M; Sanij E; Siwicki K; Ellul J; Brown D; Holloway TP; Hannan RD; McArthur GA
    Nucleic Acids Res; 2011 Apr; 39(8):3267-81. PubMed ID: 21177653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative rDNA copy number is not associated with resistance training-induced skeletal muscle hypertrophy and does not affect myotube anabolism in vitro.
    Godwin JS; Michel JM; Ludlow AT; Frugé AD; Mobley CB; Nader GA; Roberts MD
    Am J Physiol Regul Integr Comp Physiol; 2024 Sep; 327(3):R338-R348. PubMed ID: 39005083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leukemia inhibitory factor restores the hypertrophic response to increased loading in the LIF(-/-) mouse.
    Spangenburg EE; Booth FW
    Cytokine; 2006 May; 34(3-4):125-30. PubMed ID: 16781162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy.
    Adams GR; Bamman MM
    Compr Physiol; 2012 Oct; 2(4):2829-70. PubMed ID: 23720267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosome biogenesis in skeletal muscle: coordination of transcription and translation.
    von Walden F
    J Appl Physiol (1985); 2019 Aug; 127(2):591-598. PubMed ID: 31219775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and epigenetic regulation of skeletal muscle ribosome biogenesis with exercise.
    Figueiredo VC; Wen Y; Alkner B; Fernandez-Gonzalo R; Norrbom J; Vechetti IJ; Valentino T; Mobley CB; Zentner GE; Peterson CA; McCarthy JJ; Murach KA; von Walden F
    J Physiol; 2021 Jul; 599(13):3363-3384. PubMed ID: 33913170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Pol I-transcribed 45S rDNA and Pol III-transcribed 5S rDNA in Arabidopsis.
    Layat E; Sáez-Vásquez J; Tourmente S
    Plant Cell Physiol; 2012 Feb; 53(2):267-76. PubMed ID: 22173098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of age and resistance loading on skeletal muscle ribosome biogenesis.
    Stec MJ; Mayhew DL; Bamman MM
    J Appl Physiol (1985); 2015 Oct; 119(8):851-7. PubMed ID: 26294750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between Ribosome Biogenesis and the Magnitude of Hypertrophy in Overloaded Skeletal Muscle.
    Nakada S; Ogasawara R; Kawada S; Maekawa T; Ishii N
    PLoS One; 2016; 11(1):e0147284. PubMed ID: 26824605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urokinase-type plasminogen activator and macrophages are required for skeletal muscle hypertrophy in mice.
    DiPasquale DM; Cheng M; Billich W; Huang SA; van Rooijen N; Hornberger TA; Koh TJ
    Am J Physiol Cell Physiol; 2007 Oct; 293(4):C1278-85. PubMed ID: 17652428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Molecular mechanisms of skeletal muscle hypertrophy].
    Astratenkova IV; Rogozkin VA
    Ross Fiziol Zh Im I M Sechenova; 2014 Jun; 100(6):649-69. PubMed ID: 25665392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.
    Mendias CL; Schwartz AJ; Grekin JA; Gumucio JP; Sugg KB
    J Appl Physiol (1985); 2017 Mar; 122(3):571-579. PubMed ID: 27979985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I.
    Grandori C; Gomez-Roman N; Felton-Edkins ZA; Ngouenet C; Galloway DA; Eisenman RN; White RJ
    Nat Cell Biol; 2005 Mar; 7(3):311-8. PubMed ID: 15723054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wnt/beta-catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy.
    Armstrong DD; Esser KA
    Am J Physiol Cell Physiol; 2005 Oct; 289(4):C853-9. PubMed ID: 15888552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LIM and cysteine-rich domains 1 (LMCD1) regulates skeletal muscle hypertrophy, calcium handling, and force.
    Ferreira DMS; Cheng AJ; Agudelo LZ; Cervenka I; Chaillou T; Correia JC; Porsmyr-Palmertz M; Izadi M; Hansson A; Martínez-Redondo V; Valente-Silva P; Pettersson-Klein AT; Estall JL; Robinson MM; Nair KS; Lanner JT; Ruas JL
    Skelet Muscle; 2019 Oct; 9(1):26. PubMed ID: 31666122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat shock protein accumulation and heat shock transcription factor activation in rat skeletal muscle during compensatory hypertrophy.
    Locke M
    Acta Physiol (Oxf); 2008 Mar; 192(3):403-11. PubMed ID: 17973955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia transiently affects skeletal muscle hypertrophy in a functional overload model.
    Chaillou T; Koulmann N; Simler N; Meunier A; Serrurier B; Chapot R; Peinnequin A; Beaudry M; Bigard X
    Am J Physiol Regul Integr Comp Physiol; 2012 Mar; 302(5):R643-54. PubMed ID: 22189670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.