These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 22404299)

  • 41. Non-palm Plant Volatile α-Pinene Is Detected by Antenna-Biased Expressed Odorant Receptor 6 in the
    Ji T; Xu Z; Jia Q; Wang G; Hou Y
    Front Physiol; 2021; 12():701545. PubMed ID: 34434116
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Digestive proteases during development of larvae of red palm weevil, Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae).
    Alarcón FJ; Martínez TF; Barranco P; Cabello T; Díaz M; Moyano FJ
    Insect Biochem Mol Biol; 2002 Mar; 32(3):265-74. PubMed ID: 11804798
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detection of adaptive genetic diversity and chemical composition in date palm cultivars and their implications in controlling red palm weevil, Rhynchophorus ferrugineus Oliver.
    Abdel-Baky NF; Motawei MI; Al-Nujiban AAS; Aldeghairi MA; Al-Shuraym LAM; Alharbi MTM; Alsohim AS; Rehan M
    Braz J Biol; 2023; 83():e270940. PubMed ID: 37042912
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Toxicity and Detoxification Mechanism of Black Pepper and Its Major Constituent in Controlling Rhynchophorus ferrugineus Olivier (Curculionidae: Coleoptera).
    Hussain A; Rizwan-Ul-Haq M; Al-Ayedh H; Aljabr AM
    Neotrop Entomol; 2017 Dec; 46(6):685-693. PubMed ID: 28326461
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Review of Entomopathogenic Nematodes as a Biological Control Agent for Red Palm Weevil,
    Nurashikin-Khairuddin W; Abdul-Hamid SNA; Mansor MS; Bharudin I; Othman Z; Jalinas J
    Insects; 2022 Feb; 13(3):. PubMed ID: 35323543
    [No Abstract]   [Full Text] [Related]  

  • 46. Pathogenicity bioassays of isolates of Beauveria bassiana on Rhynchophorus ferrugineus.
    Lo Verde G; Torta L; Mondello V; Caldarella CG; Burruano S; Caleca V
    Pest Manag Sci; 2015 Feb; 71(2):323-8. PubMed ID: 24990249
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A large-scale gene discovery for the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae).
    Wang L; Zhang XW; Pan LL; Liu WF; Wang DP; Zhang GY; Yin YX; Yin A; Jia SG; Yu XG; Sun GY; Hu SN; Al-Mssallem IS; Yu J
    Insect Sci; 2013 Dec; 20(6):689-702. PubMed ID: 23955844
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Feeding preference of
    Manzoor M; Yang L; Wu S; El-Shafie H; Haider MS; Ahmad JN
    Bull Entomol Res; 2022 Aug; 112(4):494-501. PubMed ID: 35382914
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Infection of the red palm weevil (Rhynchophorus ferrugineus) by the entomopathogenic fungus Beauveria bassiana: a SEM study.
    Güerri-Agulló B; Gómez-Vidal S; Asensio L; Barranco P; Lopez-Llorca LV
    Microsc Res Tech; 2010 Jul; 73(7):714-25. PubMed ID: 20025054
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Palm Weevil Pheromones - Discovery and Use.
    Oehlschlager AC
    J Chem Ecol; 2016 Jul; 42(7):617-30. PubMed ID: 27430563
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bacteria from Ips sexdentatus (Coleoptera: Curculionidae) and their biocontrol potential.
    Sevim A; Gökçe C; Erbaş Z; Ozkan F
    J Basic Microbiol; 2012 Dec; 52(6):695-704. PubMed ID: 22581609
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of the gut microbiota of invasive Agrilus mali Matsumara (Coleoptera: Buprestidae) using high-throughput sequencing: uncovering plant cell-wall degrading bacteria.
    Bozorov TA; Rasulov BA; Zhang D
    Sci Rep; 2019 Mar; 9(1):4923. PubMed ID: 30894631
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gut bacteria of weevils developing on plant roots under extreme desert conditions.
    Meng F; Bar-Shmuel N; Shavit R; Behar A; Segoli M
    BMC Microbiol; 2019 Dec; 19(1):311. PubMed ID: 31888482
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis.
    Antony B; Soffan A; Jakše J; Abdelazim MM; Aldosari SA; Aldawood AS; Pain A
    BMC Genomics; 2016 Jan; 17():69. PubMed ID: 26800671
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioassay of Some Indigenous Entomopathogens for Controlling
    F Abdel-Baky N; E Hamed K; D Al-Otaibi N; A Aldeghairi M
    Pak J Biol Sci; 2021 Jan; 24(9):944-952. PubMed ID: 34585547
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of bait quantity and trap color on the trapping efficacy of the pheromone trap for the red palm weevil, Rhynchophorus ferrugineus.
    Abuagla AM; Al-Deeb MA
    J Insect Sci; 2012; 12():120. PubMed ID: 23451836
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The dataset for antifeedant activity of eugenol derived compounds against red palm weevil (
    Yan TK; Asari A; Abdullah S; Ismail M; Azmi WA
    Data Brief; 2019 Aug; 25():104227. PubMed ID: 31367662
    [No Abstract]   [Full Text] [Related]  

  • 58. Omics in the Red Palm Weevil
    Manee MM; Alqahtani FH; Al-Shomrani BM; El-Shafie HAF; Dias GB
    Insects; 2023 Mar; 14(3):. PubMed ID: 36975940
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biological responses of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) to Steinernema carpocapsae (Nematoda: Steinernematidae).
    Manachini B; Schillaci D; Arizza V
    J Econ Entomol; 2013 Aug; 106(4):1582-9. PubMed ID: 24020269
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Filiferol, a chalconoid analogue from Washingtonia filifera possibly involved in the defence against the Red Palm Weevil Rhynchophorus ferrugineus Olivier.
    Cangelosi B; Clematis F; Monroy F; Roversi PF; Troiano R; Curir P; Lanzotti V
    Phytochemistry; 2015 Jul; 115():216-21. PubMed ID: 25725962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.