BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 22404561)

  • 1. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: pore-scale studies in micromodels.
    Kim Y; Wan J; Kneafsey TJ; Tokunaga TK
    Environ Sci Technol; 2012 Apr; 46(7):4228-35. PubMed ID: 22404561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wettability phenomena at the CO2-brine-mineral interface: implications for geologic carbon sequestration.
    Wang S; Edwards IM; Clarens AF
    Environ Sci Technol; 2013 Jan; 47(1):234-41. PubMed ID: 22857395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.
    Chen C; Zhang N; Li W; Song Y
    Environ Sci Technol; 2015 Dec; 49(24):14680-7. PubMed ID: 26509282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary pressure-saturation relations for supercritical CO2 and brine in limestone/dolomite sands: implications for geologic carbon sequestration in carbonate reservoirs.
    Wang S; Tokunaga TK
    Environ Sci Technol; 2015 Jun; 49(12):7208-17. PubMed ID: 25945400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residual CO2 trapping in Indiana limestone.
    El-Maghraby RM; Blunt MJ
    Environ Sci Technol; 2013 Jan; 47(1):227-33. PubMed ID: 23167314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics computations of brine-CO2 interfacial tensions and brine-CO2-quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration.
    Iglauer S; Mathew MS; Bresme F
    J Colloid Interface Sci; 2012 Nov; 386(1):405-14. PubMed ID: 22921540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2 adhesion on hydrated mineral surfaces.
    Wang S; Tao Z; Persily SM; Clarens AF
    Environ Sci Technol; 2013 Oct; 47(20):11858-65. PubMed ID: 24040744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ganglion dynamics and its implications to geologic carbon dioxide storage.
    Wang Y; Bryan C; Dewers T; Heath JE; Jove-Colon C
    Environ Sci Technol; 2013 Jan; 47(1):219-26. PubMed ID: 22844874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling CO
    Liang Y; Tsuji S; Jia J; Tsuji T; Matsuoka T
    Acc Chem Res; 2017 Jul; 50(7):1530-1540. PubMed ID: 28661135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions.
    Saraji S; Goual L; Piri M; Plancher H
    Langmuir; 2013 Jun; 29(23):6856-66. PubMed ID: 23627310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DLVO-based estimates of adsorbed water film thicknesses in geologic CO2 reservoirs.
    Tokunaga TK
    Langmuir; 2012 May; 28(21):8001-9. PubMed ID: 22564064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO
    Jun YS; Zhang L; Min Y; Li Q
    Acc Chem Res; 2017 Jul; 50(7):1521-1529. PubMed ID: 28686035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring phase behavior of sub- and supercritical CO2 confined in porous fractal silica with 85% porosity.
    Melnichenko YB; Mayama H; Cheng G; Blach T
    Langmuir; 2010 May; 26(9):6374-9. PubMed ID: 20043698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental study of crossover from capillary to viscous fingering for supercritical CO2-water displacement in a homogeneous pore network.
    Wang Y; Zhang C; Wei N; Oostrom M; Wietsma TW; Li X; Bonneville A
    Environ Sci Technol; 2013 Jan; 47(1):212-8. PubMed ID: 22676368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evaluation of wellbore integrity along the cement-rock boundary.
    Newell DL; Carey JW
    Environ Sci Technol; 2013 Jan; 47(1):276-82. PubMed ID: 22663177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles.
    Tenney CM; Cygan RT
    Environ Sci Technol; 2014; 48(3):2035-42. PubMed ID: 24410258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity of Mount Simon sandstone and the Eau Claire shale under CO2 storage conditions.
    Carroll SA; McNab WW; Dai Z; Torres SC
    Environ Sci Technol; 2013 Jan; 47(1):252-61. PubMed ID: 22873684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration.
    Song J; Zhang D
    Environ Sci Technol; 2013 Jan; 47(1):9-22. PubMed ID: 23020638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+, Ca2+, and Mg2+ in brines affect supercritical CO2-brine-biotite interactions: ion exchange, biotite dissolution, and illite precipitation.
    Hu Y; Ray JR; Jun YS
    Environ Sci Technol; 2013 Jan; 47(1):191-7. PubMed ID: 22607371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ infrared spectroscopic study of brucite carbonation in dry to water-saturated supercritical carbon dioxide.
    Loring JS; Thompson CJ; Zhang C; Wang Z; Schaef HT; Rosso KM
    J Phys Chem A; 2012 May; 116(19):4768-77. PubMed ID: 22533532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.