These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 22404645)

  • 1. Genome-wide association genetics of an adaptive trait in lodgepole pine.
    Parchman TL; Gompert Z; Mudge J; Schilkey FD; Benkman CW; Buerkle CA
    Mol Ecol; 2012 Jun; 21(12):2991-3005. PubMed ID: 22404645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ genetic association for serotiny, a fire-related trait, in Mediterranean maritime pine (Pinus pinaster).
    Budde KB; Heuertz M; Hernández-Serrano A; Pausas JG; Vendramin GG; Verdú M; González-Martínez SC
    New Phytol; 2014 Jan; 201(1):230-241. PubMed ID: 24015853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fire structures pine serotiny at different scales.
    Hernández-Serrano A; Verdú M; González-Martínez SC; Pausas JG
    Am J Bot; 2013 Dec; 100(12):2349-56. PubMed ID: 24222682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conflicting selection from fire and seed predation drives fine-scaled phenotypic variation in a widespread North American conifer.
    Talluto MV; Benkman CW
    Proc Natl Acad Sci U S A; 2014 Jul; 111(26):9543-8. PubMed ID: 24979772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced seed defenses potentially relax selection by seed predators against serotiny in lodgepole pine.
    Parker AL; Benkman CW
    Ecol Evol; 2020 Jun; 10(12):6001-6008. PubMed ID: 32607207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field heritability of a plant adaptation to fire in heterogeneous landscapes.
    Castellanos MC; González-Martínez SC; Pausas JG
    Mol Ecol; 2015 Nov; 24(22):5633-42. PubMed ID: 26460597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maintenance costs of serotiny in a variably serotinous pine: The role of water supply.
    Martín-Sanz RC; Callejas-Díaz M; Tonnabel J; Climent JM
    PLoS One; 2017; 12(7):e0181648. PubMed ID: 28732015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disentangling plasticity of serotiny, a key adaptive trait in a Mediterranean conifer.
    Martín-Sanz RC; Santos-Del-Blanco L; Notivol E; Chambel MR; San-Martín R; Climent J
    Am J Bot; 2016 Sep; 103(9):1582-91. PubMed ID: 27620182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seed release in serotinous lodgepole pine forests after mountain pine beetle outbreak.
    Teste FP; Lieffers VJ; Landhausser SM
    Ecol Appl; 2011 Jan; 21(1):150-62. PubMed ID: 21516894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landscape-scale eco-evolutionary dynamics: selection by seed predators and fire determine a major reproductive strategy.
    Talluto MV; Benkman CW
    Ecology; 2013 Jun; 94(6):1307-16. PubMed ID: 23923494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jack pine of all trades: Deciphering intraspecific variability of a key adaptive trait at the rear edge of a widespread fire-embracing North American conifer.
    Pelletier E; de Lafontaine G
    Am J Bot; 2023 Feb; 110(2):e16111. PubMed ID: 36462149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heritability and quantitative genetic divergence of serotiny, a fire-persistence plant trait.
    Hernández-Serrano A; Verdú M; Santos-Del-Blanco L; Climent J; González-Martínez SC; Pausas JG
    Ann Bot; 2014 Sep; 114(3):571-7. PubMed ID: 25008363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low levels of population genetic structure in Pinus contorta (Pinaceae) across a geographic mosaic of co-evolution.
    Parchman TL; Benkman CW; Jenkins B; Buerkle CA
    Am J Bot; 2011 Apr; 98(4):669-79. PubMed ID: 21613166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fire frequency, as well as stress response and developmental gene control serotiny level variation in a widespread pioneer Mediterranean conifer,
    Romero B; Scotti I; Fady B; Ganteaume A
    Ecol Evol; 2023 Mar; 13(3):e9919. PubMed ID: 36960240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of introgression on the genetic population structure of two ecologically and economically important conifer species: lodgepole pine (Pinus contorta var. latifolia) and jack pine (Pinus banksiana).
    Cullingham CI; Cooke JE; Coltman DW
    Genome; 2013 Oct; 56(10):577-85. PubMed ID: 24237338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reciprocal selection causes a coevolutionary arms race between crossbills and lodgepole pine.
    Benkman CW; Parchman TL; Favis A; Siepielski AM
    Am Nat; 2003 Aug; 162(2):182-94. PubMed ID: 12858263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-species outlier detection reveals different evolutionary pressures between sister species.
    Cullingham CI; Cooke JEK; Coltman DW
    New Phytol; 2014 Oct; 204(1):215-229. PubMed ID: 24942459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role for habitat area in the geographic mosaic of coevolution between red crossbills and lodgepole pine.
    Siepielski AM; Benkman CW
    J Evol Biol; 2005 Jul; 18(4):1042-9. PubMed ID: 16033577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speciation history of three closely related pines Pinus mugo (T.), P. uliginosa (N.) and P. sylvestris (L.).
    Wachowiak W; Palmé AE; Savolainen O
    Mol Ecol; 2011 Apr; 20(8):1729-43. PubMed ID: 21375633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From the ground up: biotic and abiotic features that set the course from genes to ecosystems.
    Benkman CW; Jech S; Talluto MV
    Ecol Evol; 2016 Oct; 6(19):7032-7038. PubMed ID: 28725380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.