These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22404856)

  • 1. Relevance of animal models to human tardive dyskinesia.
    Blanchet PJ; Parent MT; Rompré PH; Lévesque D
    Behav Brain Funct; 2012 Mar; 8():12. PubMed ID: 22404856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallels between behavioral and neurochemical variability in the rat vacuous chewing movement model of tardive dyskinesia.
    Bachus SE; Yang E; McCloskey SS; Minton JN
    Behav Brain Res; 2012 Jun; 231(2):323-36. PubMed ID: 22503783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Animal models of tardive dyskinesia--a review.
    Kulkarni SK; Naidu PS
    Indian J Physiol Pharmacol; 2001 Apr; 45(2):148-60. PubMed ID: 11480221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinguishing akathisia and tardive dyskinesia: a review of the literature.
    Munetz MR; Cornes CL
    J Clin Psychopharmacol; 1983 Dec; 3(6):343-50. PubMed ID: 6139392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Animal models of tardive dyskinesia.
    Kulkarni SK; Dhir A
    Int Rev Neurobiol; 2011; 98():265-87. PubMed ID: 21907091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine D(1A) receptor function in a rodent model of tardive dyskinesia.
    Van Kampen JM; Stoessl AJ
    Neuroscience; 2000; 101(3):629-35. PubMed ID: 11113312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress and the antipsychotic-induced vacuous chewing movement model of tardive dyskinesia: evidence for antioxidant-based prevention strategies.
    Lister J; Nobrega JN; Fletcher PJ; Remington G
    Psychopharmacology (Berl); 2014 Jun; 231(11):2237-49. PubMed ID: 24752659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous and tardive dyskinesias: clinical and laboratory studies.
    Casey DE
    J Clin Psychiatry; 1985 Apr; 46(4 Pt 2):42-7. PubMed ID: 2858480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noradrenergic effects in tardive dyskinesia, akathisia and pseudoparkinsonism via the limbic system and basal ganglia.
    Wilbur R; Kulik FA; Kulik AV
    Prog Neuropsychopharmacol Biol Psychiatry; 1988; 12(6):849-64. PubMed ID: 2907387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clozapine in tardive dyskinesia: observations from human and animal model studies.
    Tamminga CA; Thaker GK; Moran M; Kakigi T; Gao XM
    J Clin Psychiatry; 1994 Sep; 55 Suppl B():102-6. PubMed ID: 7961550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of 5-HT1A and 5-HT2A/2C receptor modulation on neuroleptic-induced vacuous chewing movements.
    Naidu PS; Kulkarni SK
    Eur J Pharmacol; 2001 Sep; 428(1):81-6. PubMed ID: 11779040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicotine reduces antipsychotic-induced orofacial dyskinesia in rats.
    Bordia T; McIntosh JM; Quik M
    J Pharmacol Exp Ther; 2012 Mar; 340(3):612-9. PubMed ID: 22144565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tardive dyskinesia: pathophysiology and animal models.
    Casey DE
    J Clin Psychiatry; 2000; 61 Suppl 4():5-9. PubMed ID: 10739324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of age on a new animal model of tardive dyskinesia.
    Bergamo M; Abílio VC; Queiroz CM; Barbosa-Júnior HN; Abdanur LR; Frussa-Filho R
    Neurobiol Aging; 1997; 18(6):623-9. PubMed ID: 9461060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blockade of nigral and pallidal opioid receptors suppresses vacuous chewing movements in a rodent model of tardive dyskinesia.
    McCormick SE; Stoessl AJ
    Neuroscience; 2002; 112(4):851-9. PubMed ID: 12088744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oral dyskinesia in brain-damaged rats withdrawn from a neuroleptic: implication for models of tardive dyskinesia.
    Glassman RB; Glassman HN
    Psychopharmacology (Berl); 1980; 69(1):19-25. PubMed ID: 6104844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible beneficial effect of peroxisome proliferator-activated receptor (PPAR)--α and γ agonist against a rat model of oral dyskinesia.
    Grover S; Kumar P; Singh K; Vikram V; Budhiraja RD
    Pharmacol Biochem Behav; 2013 Oct; 111():17-23. PubMed ID: 23948071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beneficial effects of lycopene against haloperidol induced orofacial dyskinesia in rats: Possible neurotransmitters and neuroinflammation modulation.
    Datta S; Jamwal S; Deshmukh R; Kumar P
    Eur J Pharmacol; 2016 Jan; 771():229-35. PubMed ID: 26712377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An animal model to study the molecular basis of tardive dyskinesia.
    Bishnoi M; Boparai RK
    Methods Mol Biol; 2012; 829():193-201. PubMed ID: 22231815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of tardive dyskinesia in Cebus apella and Macaca speciosa monkeys: a review.
    Domino EF
    Psychopharmacology Suppl; 1985; 2():217-23. PubMed ID: 2860660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.