BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22404956)

  • 1. Silicatein: from chemical through enzymatic silica formation, to synthesis of biomimetic nanomaterials.
    Müller WE; Wang X
    FEBS J; 2012 May; 279(10):1709. PubMed ID: 22404956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired synthesis of multifunctional inorganic and bio-organic hybrid materials.
    Andre R; Tahir MN; Natalio F; Tremel W
    FEBS J; 2012 May; 279(10):1737-49. PubMed ID: 22510103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifunctional small molecules are biomimetic catalysts for silica synthesis at neutral pH.
    Roth KM; Zhou Y; Yang W; Morse DE
    J Am Chem Soc; 2005 Jan; 127(1):325-30. PubMed ID: 15631482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Progress in silicatein from sponges].
    Cao X; Cao H; Yu X; Zhang W
    Sheng Wu Gong Cheng Xue Bao; 2009 Dec; 25(12):1882-6. PubMed ID: 20352963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biogenic inorganic polysilicates (biosilica): formation and biomedical applications.
    Schröder HC; Wang X; Schloßmacher U; Wiens M; Müller WE
    Prog Mol Subcell Biol; 2013; 54():197-234. PubMed ID: 24420715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicateins--a novel paradigm in bioinorganic chemistry: enzymatic synthesis of inorganic polymeric silica.
    Müller WE; Schröder HC; Burghard Z; Pisignano D; Wang X
    Chemistry; 2013 May; 19(19):5790-804. PubMed ID: 23512301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine).
    Schröder HC; Brandt D; Schlossmacher U; Wang X; Tahir MN; Tremel W; Belikov SI; Müller WE
    Naturwissenschaften; 2007 May; 94(5):339-59. PubMed ID: 17216430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired enzymatic synthesis of silica nanocrystals provided by recombinant silicatein from the marine sponge Latrunculia oparinae.
    Shkryl YN; Bulgakov VP; Veremeichik GN; Kovalchuk SN; Kozhemyako VB; Kamenev DG; Semiletova IV; Timofeeva YO; Shchipunov YA; Kulchin YN
    Bioprocess Biosyst Eng; 2016 Jan; 39(1):53-8. PubMed ID: 26494639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical architecture of sponge spicules: biocatalytic and structure-directing activity of silicatein proteins as model for bioinspired applications.
    Schröder HC; Grebenjuk VA; Wang X; Müller WE
    Bioinspir Biomim; 2016 Jul; 11(4):041002. PubMed ID: 27452043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired self-assembly of tyrosinase-modified silicatein and fluorescent core-shell silica spheres.
    Elkhooly TA; Müller WE; Wang X; Tremel W; Isbert S; Wiens M
    Bioinspir Biomim; 2014 Nov; 9(4):044001. PubMed ID: 25378146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship.
    Müller WE; Boreiko A; Wang X; Belikov SI; Wiens M; Grebenjuk VA; Schlossmacher U; Schröder HC
    Gene; 2007 Jun; 395(1-2):62-71. PubMed ID: 17408887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silintaphin-1--interaction with silicatein during structure-guiding bio-silica formation.
    Schlossmacher U; Wiens M; Schröder HC; Wang X; Jochum KP; Müller WE
    FEBS J; 2011 Apr; 278(7):1145-55. PubMed ID: 21284806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced crystallization of amorphous biosilica to cristobalite by silicatein.
    Fuchs I; Aluma Y; Ilan M; Mastai Y
    J Phys Chem B; 2014 Feb; 118(8):2104-11. PubMed ID: 24499531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-healing, an intrinsic property of biomineralization processes.
    Müller WE; Wang X; Jochum KP; Schröder HC
    IUBMB Life; 2013 May; 65(5):382-96. PubMed ID: 23509013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diatoms: self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes.
    Yang W; Lopez PJ; Rosengarten G
    Analyst; 2011 Jan; 136(1):42-53. PubMed ID: 20931107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient silica synthesis from tetra(glycerol)orthosilicate with cathepsin- and silicatein-like proteins.
    Povarova NV; Barinov NA; Baranov MS; Markina NM; Varizhuk AM; Pozmogova GE; Klinov DV; Kozhemyako VB; Lukyanov KA
    Sci Rep; 2018 Nov; 8(1):16759. PubMed ID: 30425281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A water-soluble precursor for efficient silica polymerization by silicateins.
    Povarova NV; Markina NM; Baranov MS; Barinov NA; Klinov DV; Kozhemyako VB; Lukyanov KA
    Biochem Biophys Res Commun; 2018 Jan; 495(2):2066-2070. PubMed ID: 29253563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile fabrication of uniform silica films with tunable physical properties using silicatein protein from sponges.
    Rai A; Perry CC
    Langmuir; 2010 Mar; 26(6):4152-9. PubMed ID: 20000795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicateins, silicatein interactors and cellular interplay in sponge skeletogenesis: formation of glass fiber-like spicules.
    Wang X; Schloßmacher U; Wiens M; Batel R; Schröder HC; Müller WE
    FEBS J; 2012 May; 279(10):1721-36. PubMed ID: 22340505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lessons from seashells: silica mineralization via protein templating.
    Foo CW; Huang J; Kaplan DL
    Trends Biotechnol; 2004 Nov; 22(11):577-85. PubMed ID: 15491802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.