These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 22405032)
21. Deoxynivalenol Detoxification in Transgenic Wheat Confers Resistance to Fusarium Head Blight and Crown Rot Diseases. Mandalà G; Tundo S; Francesconi S; Gevi F; Zolla L; Ceoloni C; D'Ovidio R Mol Plant Microbe Interact; 2019 May; 32(5):583-592. PubMed ID: 30422742 [No Abstract] [Full Text] [Related]
22. Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat. Cheng W; Song XS; Li HP; Cao LH; Sun K; Qiu XL; Xu YB; Yang P; Huang T; Zhang JB; Qu B; Liao YC Plant Biotechnol J; 2015 Dec; 13(9):1335-45. PubMed ID: 25735638 [TBL] [Abstract][Full Text] [Related]
23. Expression analysis of defense-related genes in wheat in response to infection by Fusarium graminearum. Kong L; Ohm HW; Anderson JM Genome; 2007 Nov; 50(11):1038-48. PubMed ID: 18059549 [TBL] [Abstract][Full Text] [Related]
24. Integrated metabolo-transcriptomics and functional characterization reveals that the wheat auxin receptor TIR1 negatively regulates defense against Fusarium graminearum. Su P; Zhao L; Li W; Zhao J; Yan J; Ma X; Li A; Wang H; Kong L J Integr Plant Biol; 2021 Feb; 63(2):340-352. PubMed ID: 32678930 [TBL] [Abstract][Full Text] [Related]
25. Involvement of Fungal Pectin Methylesterase Activity in the Interaction Between Fusarium graminearum and Wheat. Sella L; Castiglioni C; Paccanaro MC; Janni M; Schäfer W; D'Ovidio R; Favaron F Mol Plant Microbe Interact; 2016 Apr; 29(4):258-67. PubMed ID: 26713352 [TBL] [Abstract][Full Text] [Related]
26. The modulation of stomatal conductance and photosynthetic parameters is involved in Fusarium head blight resistance in wheat. Francesconi S; Balestra GM PLoS One; 2020; 15(6):e0235482. PubMed ID: 32603342 [TBL] [Abstract][Full Text] [Related]
27. Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production. Ameye M; Audenaert K; De Zutter N; Steppe K; Van Meulebroek L; Vanhaecke L; De Vleesschauwer D; Haesaert G; Smagghe G Plant Physiol; 2015 Apr; 167(4):1671-84. PubMed ID: 25713338 [TBL] [Abstract][Full Text] [Related]
28. Recognition of glycoside hydrolase 12 proteins by the immune receptor RXEG1 confers Fusarium head blight resistance in wheat. Wang Z; Yang B; Zheng W; Wang L; Cai X; Yang J; Song R; Yang S; Wang Y; Xiao J; Liu H; Wang Y; Wang X; Wang Y Plant Biotechnol J; 2023 Apr; 21(4):769-781. PubMed ID: 36575911 [TBL] [Abstract][Full Text] [Related]
29. Transcriptome analysis of a wheat near-isogenic line pair carrying Fusarium head blight-resistant and -susceptible alleles. Jia H; Cho S; Muehlbauer GJ Mol Plant Microbe Interact; 2009 Nov; 22(11):1366-78. PubMed ID: 19810806 [TBL] [Abstract][Full Text] [Related]
30. Fusarium graminearum forms mycotoxin producing infection structures on wheat. Boenisch MJ; Schäfer W BMC Plant Biol; 2011 Jul; 11():110. PubMed ID: 21798058 [TBL] [Abstract][Full Text] [Related]
31. Functional Analysis of Qi PF; Zhang YZ; Liu CH; Chen Q; Guo ZR; Wang Y; Xu BJ; Jiang YF; Zheng T; Gong X; Luo CH; Wu W; Kong L; Deng M; Ma J; Lan XJ; Jiang QT; Wei YM; Wang JR; Zheng YL Toxins (Basel); 2019 Jan; 11(2):. PubMed ID: 30678154 [TBL] [Abstract][Full Text] [Related]
32. Identification of putative phosphoproteins in wheat spikes induced by Fusarium graminearum. Ding L; Yang R; Yang G; Cao J; Li P; Zhou Y Planta; 2016 Mar; 243(3):719-31. PubMed ID: 26669597 [TBL] [Abstract][Full Text] [Related]
33. Phenotypic Characterization of Transgenic Wheat Lines Against Fungal Pathogens Puccinia triticina and Fusarium graminearum. Kaur J; Shah D; Fellers J Methods Mol Biol; 2017; 1679():269-276. PubMed ID: 28913807 [TBL] [Abstract][Full Text] [Related]
34. Time-course expression QTL-atlas of the global transcriptional response of wheat to Fusarium graminearum. Samad-Zamini M; Schweiger W; Nussbaumer T; Mayer KFX; Buerstmayr H Plant Biotechnol J; 2017 Nov; 15(11):1453-1464. PubMed ID: 28332274 [TBL] [Abstract][Full Text] [Related]
35. Co-overexpression of chitinase and β-1,3-glucanase significantly enhanced the resistance of Iranian wheat cultivars to Fusarium. Mohammadizadeh-Heydari N; Tohidfar M; Maleki Zanjani B; Mohsenpour M; Ghanbari Moheb Seraj R; Esmaeilzadeh-Salestani K BMC Biotechnol; 2024 May; 24(1):35. PubMed ID: 38790016 [TBL] [Abstract][Full Text] [Related]
36. Genome-Wide Identification and Characterization of Duan X; Song X; Wang J; Zhou M Genes (Basel); 2020 Sep; 11(10):. PubMed ID: 32992604 [TBL] [Abstract][Full Text] [Related]
37. The cold-induced defensin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat. Sasaki K; Kuwabara C; Umeki N; Fujioka M; Saburi W; Matsui H; Abe F; Imai R J Biotechnol; 2016 Jun; 228():3-7. PubMed ID: 27080445 [TBL] [Abstract][Full Text] [Related]
39. Identification of Fusarium graminearum-responsive miRNAs and their targets in wheat by sRNA sequencing and degradome analysis. Jin X; Jia L; Wang Y; Li B; Sun D; Chen X Funct Integr Genomics; 2020 Jan; 20(1):51-61. PubMed ID: 31302787 [TBL] [Abstract][Full Text] [Related]
40. Identification, characterization and mapping of differentially expressed genes in a winter wheat cultivar (Centenaire) resistant to Fusarium graminearum infection. Muhovski Y; Batoko H; Jacquemin JM Mol Biol Rep; 2012 Oct; 39(10):9583-600. PubMed ID: 22718510 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]