These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 22405332)

  • 1. Glucosinolate structures in evolution.
    Agerbirk N; Olsen CE
    Phytochemistry; 2012 May; 77():16-45. PubMed ID: 22405332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isoferuloyl derivatives of five seed glucosinolates in the crucifer genus Barbarea.
    Agerbirk N; Olsen CE
    Phytochemistry; 2011 May; 72(7):610-23. PubMed ID: 21354584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucosinolate profiles and phylogeny in Barbarea compared to other tribe Cardamineae (Brassicaceae) and Reseda (Resedaceae), based on a library of ion trap HPLC-MS/MS data of reference desulfoglucosinolates.
    Agerbirk N; Hansen CC; Olsen CE; Kiefer C; Hauser TP; Christensen S; Jensen KR; Ørgaard M; Pattison DI; Lange CBA; Cipollini D; Koch MA
    Phytochemistry; 2021 May; 185():112658. PubMed ID: 33744557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple hydroxyphenethyl glucosinolate isomers and their tandem mass spectrometric distinction in a geographically structured polymorphism in the crucifer Barbarea vulgaris.
    Agerbirk N; Olsen CE; Heimes C; Christensen S; Bak S; Hauser TP
    Phytochemistry; 2015 Jul; 115():130-42. PubMed ID: 25277803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucosinolate diversity within a phylogenetic framework of the tribe Cardamineae (Brassicaceae) unraveled with HPLC-MS/MS and NMR-based analytical distinction of 70 desulfoglucosinolates.
    Olsen CE; Huang XC; Hansen CIC; Cipollini D; Ørgaard M; Matthes A; Geu-Flores F; Koch MA; Agerbirk N
    Phytochemistry; 2016 Dec; 132():33-56. PubMed ID: 27743600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of glucosinolate diversity in the crucifer tribe Cardamineae and the remaining order Brassicales highlights repetitive evolutionary loss and gain of biosynthetic steps.
    Agerbirk N; Hansen CC; Kiefer C; Hauser TP; Ørgaard M; Asmussen Lange CB; Cipollini D; Koch MA
    Phytochemistry; 2021 May; 185():112668. PubMed ID: 33743499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants.
    Blažević I; Montaut S; Burčul F; Olsen CE; Burow M; Rollin P; Agerbirk N
    Phytochemistry; 2020 Jan; 169():112100. PubMed ID: 31771793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoalexins of the crucifer Barbarea vulgaris: Structural profile and correlation with glucosinolate turnover.
    Cárdenas PD; Landtved JP; Larsen SH; Lindegaard N; Wøhlk S; Jensen KR; Pattison DI; Burow M; Bak S; Crocoll C; Agerbirk N
    Phytochemistry; 2023 Sep; 213():113742. PubMed ID: 37269935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and structural elucidation of 4-(beta-D-glucopyranosyldisulfanyl)butyl glucosinolate from leaves of rocket salad (Eruca sativa L.) and its antioxidative activity.
    Kim SJ; Jin S; Ishii G
    Biosci Biotechnol Biochem; 2004 Dec; 68(12):2444-50. PubMed ID: 15618613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural elucidation of 4-(cystein-S-yl)butyl glucosinolate from the leaves of Eruca sativa.
    Kim SJ; Kawaharada C; Jin S; Hashimoto M; Ishii G; Yamauchi H
    Biosci Biotechnol Biochem; 2007 Jan; 71(1):114-21. PubMed ID: 17213676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex metabolism of aromatic glucosinolates in Pieris rapae caterpillars involving nitrile formation, hydroxylation, demethylation, sulfation, and host plant dependent carboxylic acid formation.
    Agerbirk N; Olsen CE; Poulsen E; Jacobsen N; Hansen PR
    Insect Biochem Mol Biol; 2010 Feb; 40(2):126-37. PubMed ID: 20079434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geographic and evolutionary diversification of glucosinolates among near relatives of Arabidopsis thaliana (Brassicaceae).
    Windsor AJ; Reichelt M; Figuth A; Svatos A; Kroymann J; Kliebenstein DJ; Gershenzon J; Mitchell-Olds T
    Phytochemistry; 2005 Jun; 66(11):1321-33. PubMed ID: 15913672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening Brassica species for glucosinolate content.
    Antonious GF; Bomford M; Vincelli P
    J Environ Sci Health B; 2009 Mar; 44(3):311-6. PubMed ID: 19280485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cultivated Winter-Type
    De Nicola GR; Montaut S; Leclair K; Garrioux J; Guillot X; Rollin P
    Molecules; 2024 Aug; 29(16):. PubMed ID: 39202882
    [No Abstract]   [Full Text] [Related]  

  • 15. Glucosinolates: Natural Occurrence, Biosynthesis, Accessibility, Isolation, Structures, and Biological Activities.
    Nguyen VPT; Stewart J; Lopez M; Ioannou I; Allais F
    Molecules; 2020 Oct; 25(19):. PubMed ID: 33022970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Glucosinolate Composition in Brassicaceae Seeds by Germination and Fungal Elicitation.
    Andini S; Dekker P; Gruppen H; Araya-Cloutier C; Vincken JP
    J Agric Food Chem; 2019 Nov; 67(46):12770-12779. PubMed ID: 31652052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucosinolate hydrolysis products in the crucifer Barbarea vulgaris include a thiazolidine-2-one from a specific phenolic isomer as well as oxazolidine-2-thiones.
    Agerbirk N; Olsen CE
    Phytochemistry; 2015 Jul; 115():143-51. PubMed ID: 25467719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel bioresources for studies of Brassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production.
    Araki R; Hasumi A; Nishizawa OI; Sasaki K; Kuwahara A; Sawada Y; Totoki Y; Toyoda A; Sakaki Y; Li Y; Saito K; Ogawa T; Hirai MY
    Plant Biotechnol J; 2013 Oct; 11(8):1017-27. PubMed ID: 23910994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of BGLU30 in Glucosinolate Catabolism in the Arabidopsis Leaf under Dark Conditions.
    Morikawa-Ichinose T; Miura D; Zhang L; Kim SJ; Maruyama-Nakashita A
    Plant Cell Physiol; 2020 Jun; 61(6):1095-1106. PubMed ID: 32255184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and identification of 4-α-rhamnosyloxy benzyl glucosinolate in Noccaea caerulescens showing intraspecific variation.
    de Graaf RM; Krosse S; Swolfs AE; te Brinke E; Prill N; Leimu R; van Galen PM; Wang Y; Aarts MG; van Dam NM
    Phytochemistry; 2015 Feb; 110():166-71. PubMed ID: 25482220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.