BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 22405401)

  • 1. Eel osmotic stress transcriptional factor 1 (Ostf1) is highly expressed in gill mitochondria-rich cells, where ERK phosphorylated.
    Tse WK; Chow SC; Wong CK
    Front Zool; 2012 Mar; 9(1):3. PubMed ID: 22405401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of osmotic stress transcription factor 1 in fishes.
    Tse WK
    Front Zool; 2014; 11(1):86. PubMed ID: 25419222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of osmotic stress transcription factor 1 (Ostf1) in tilapia (Oreochromis mossambicus) gill epithelium during salinity stress.
    Fiol DF; Chan SY; Kültz D
    J Exp Biol; 2006 Aug; 209(Pt 16):3257-65. PubMed ID: 16888073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic analysis reveals specific osmoregulatory adaptive responses in gill mitochondria-rich cells and pavement cells of the Japanese eel.
    Lai KP; Li JW; Gu J; Chan TF; Tse WK; Wong CK
    BMC Genomics; 2015 Dec; 16():1072. PubMed ID: 26678671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dexamethasone (DEX) induces Osmotic stress transcription factor 1 (Ostf1) through the Akt-GSK3β pathway in freshwater Japanese eel gill cell cultures.
    Chow SC; Tse WK; Wong CK
    Biol Open; 2013 May; 2(5):487-91. PubMed ID: 23789097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid hyperosmotic coinduction of two tilapia (Oreochromis mossambicus) transcription factors in gill cells.
    Fiol DF; Kültz D
    Proc Natl Acad Sci U S A; 2005 Jan; 102(3):927-32. PubMed ID: 15642943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid response of osmotic stress transcription factor 1 (OSTF1) expression to salinity challenge in gills of marine euryhaline milkfish (Chanos chanos).
    Lin YT; Lee TH
    PLoS One; 2022; 17(7):e0271029. PubMed ID: 35793350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperosmotic shock adaptation by cortisol involves upregulation of branchial osmotic stress transcription factor 1 gene expression in Mozambique Tilapia.
    McGuire A; Aluru N; Takemura A; Weil R; Wilson JM; Vijayan MM
    Gen Comp Endocrinol; 2010 Jan; 165(2):321-9. PubMed ID: 19651127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miR-429 regulation of osmotic stress transcription factor 1 (OSTF1) in tilapia during osmotic stress.
    Yan B; Zhao LH; Guo JT; Zhao JL
    Biochem Biophys Res Commun; 2012 Sep; 426(3):294-8. PubMed ID: 22940129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cloning of eel osmotic stress transcription factor and the regulation of its expression in primary gill cell culture.
    Tse WK; Chow SC; Wong CK
    J Exp Biol; 2008 Jun; 211(Pt 12):1964-8. PubMed ID: 18515727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medaka osmotic stress transcription factor 1b (Ostf1b/TSC22D3-2) triggers hyperosmotic responses of different ion transporters in medaka gill and human embryonic kidney cells via the JNK signalling pathway.
    Tse WK; Lai KP; Takei Y
    Int J Biochem Cell Biol; 2011 Dec; 43(12):1764-75. PubMed ID: 21907305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of ion transporter expression in gill mitochondrion-rich cells of eels acclimated to low-Na(+) or-Cl(-) freshwater.
    Tse WK; Chow SC; Lai KP; Au DW; Wong CK
    J Exp Zool A Ecol Genet Physiol; 2011 Aug; 315(7):385-93. PubMed ID: 21455947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and expression of Na+/K+ -ATPase and osmotic stress transcription factor 1 mRNA in black porgy, Acanthopagrus schlegeli during osmotic stress.
    Choi CY; An KW
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Jan; 149(1):91-100. PubMed ID: 17900954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish.
    Hiroi J; Yasumasu S; McCormick SD; Hwang PP; Kaneko T
    J Exp Biol; 2008 Aug; 211(Pt 16):2584-99. PubMed ID: 18689412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential role of polyamines in gill epithelial remodeling during extreme hypoosmotic challenges in the Gulf killifish, Fundulus grandis.
    Guan Y; Zhang GX; Zhang S; Domangue B; Galvez F
    Comp Biochem Physiol B Biochem Mol Biol; 2016; 194-195():39-50. PubMed ID: 26780219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and regulation of expression of the Na+-Cl--taurine transporter in gill cells of freshwater Japanese eels.
    Chow SC; Ching LY; Wong AM; Wong CK
    J Exp Biol; 2009 Oct; 212(Pt 20):3205-10. PubMed ID: 19801424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Claudin-6, -10d and -10e contribute to seawater acclimation in the euryhaline puffer fish Tetraodon nigroviridis.
    Bui P; Kelly SP
    J Exp Biol; 2014 May; 217(Pt 10):1758-67. PubMed ID: 24526724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis of MicroRNA-messenger RNA interactome in ex-vivo gill filaments, Anguilla japonica.
    Ng HM; Ho JCH; Nong W; Hui JHL; Lai KP; Wong CKC
    BMC Genomics; 2020 Mar; 21(1):208. PubMed ID: 32131732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replacement of mitochondrion-rich cells during regeneration of the gills and opercular epithelium in zebrafish (Danio rerio).
    Nguyen F; Jonz MG
    Acta Histochem; 2021 Jul; 123(5):151738. PubMed ID: 34091038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ClC-3 chloride channel and osmoregulation in the European sea bass, Dicentrarchus labrax.
    Bossus M; Charmantier G; Blondeau-Bidet E; Valletta B; Boulo V; Lorin-Nebel C
    J Comp Physiol B; 2013 Jul; 183(5):641-62. PubMed ID: 23292336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.