These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 22405497)

  • 1. Effective property of tooth enamel: monoclinic behavior.
    Lu C; Nakamura T; Korach CS
    J Biomech; 2012 May; 45(8):1437-43. PubMed ID: 22405497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics.
    He LH; Swain MV
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):18-29. PubMed ID: 19627768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of property gradients on the mechanical behavior of human enamel.
    An B; Wang R; Arola D; Zhang D
    J Mech Behav Biomed Mater; 2012 May; 9():63-72. PubMed ID: 22498284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of crystal arrangement on the mechanical performance of enamel.
    An B; Wang R; Zhang D
    Acta Biomater; 2012 Oct; 8(10):3784-93. PubMed ID: 22743111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the elastic/plastic transition of human enamel by nanoindentation.
    Ang SF; Scholz T; Klocke A; Schneider GA
    Dent Mater; 2009 Nov; 25(11):1403-10. PubMed ID: 19647864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanical anisotropy on a longitudinal section of human enamel studied by nanoindentation.
    Cheng ZJ; Wang XM; Ge J; Yan JX; Ji N; Tian LL; Cui FZ
    J Mater Sci Mater Med; 2010 Jun; 21(6):1811-6. PubMed ID: 20229184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of microstructure upon elastic behaviour of human tooth enamel.
    Xie ZH; Swain MV; Swadener G; Munroe P; Hoffman M
    J Biomech; 2009 May; 42(8):1075-80. PubMed ID: 19345363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of mechanism of cervical lesion formation in simulated molars during mastication and parafunction.
    Dejak B; Mlotkowski A; Romanowicz M
    J Prosthet Dent; 2005 Dec; 94(6):520-9. PubMed ID: 16316798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uniaxial compressive behavior of micro-pillars of dental enamel characterized in multiple directions.
    Yilmaz ED; Jelitto H; Schneider GA
    Acta Biomater; 2015 Apr; 16():187-95. PubMed ID: 25620794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Damage mechanisms in uniaxial compression of single enamel rods.
    An B; Wang R; Arola D; Zhang D
    J Mech Behav Biomed Mater; 2015 Feb; 42():1-9. PubMed ID: 25460920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural integrity of enamel: experimental and modeling.
    Xie Z; Swain MV; Hoffman MJ
    J Dent Res; 2009 Jun; 88(6):529-33. PubMed ID: 19587157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical flexural strength of enamel: transition from brittle to damage-tolerant behaviour.
    Bechtle S; Ă–zcoban H; Lilleodden ET; Huber N; Schreyer A; Swain MV; Schneider GA
    J R Soc Interface; 2012 Jun; 9(71):1265-74. PubMed ID: 22031729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical modelling of in situ elastic deformation of human enamel based on photoelastic and diffraction analysis of stresses and strains.
    Sui T; Lunt AJ; Baimpas N; Sandholzer MA; Hu J; Dolbnya IP; Landini G; Korsunsky AM
    Acta Biomater; 2014 Jan; 10(1):343-54. PubMed ID: 24121194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enamel dictates whole tooth deformation: a finite element model study validated by a metrology method.
    Barak MM; Geiger S; Chattah NL; Shahar R; Weiner S
    J Struct Biol; 2009 Dec; 168(3):511-20. PubMed ID: 19635570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrete element models of tooth enamel, a complex three-dimensional biological composite.
    Pro JW; Barthelat F
    Acta Biomater; 2019 Aug; 94():536-552. PubMed ID: 31055119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the critical parameters that regulate the deformation behaviour of tooth enamel.
    Xie Z; Swain M; Munroe P; Hoffman M
    Biomaterials; 2008 Jun; 29(17):2697-703. PubMed ID: 18359075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale modelling and diffraction-based characterization of elastic behaviour of human dentine.
    Sui T; Sandholzer MA; Baimpas N; Dolbnya IP; Walmsley A; Lumley PJ; Landini G; Korsunsky AM
    Acta Biomater; 2013 Aug; 9(8):7937-47. PubMed ID: 23602879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of prism orientation and loading direction on contact stresses in prismatic enamel of primates: implications for interpreting wear patterns.
    Shimizu D; Macho GA; Spears IR
    Am J Phys Anthropol; 2005 Apr; 126(4):427-34. PubMed ID: 15386229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size dependent elastic modulus and mechanical resilience of dental enamel.
    O'Brien S; Shaw J; Zhao X; Abbott PV; Munroe P; Xu J; Habibi D; Xie Z
    J Biomech; 2014 Mar; 47(5):1060-6. PubMed ID: 24529912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of environment on the mechanical behaviour of mature human enamel.
    He LH; Swain MV
    Biomaterials; 2007 Oct; 28(30):4512-20. PubMed ID: 17659336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.