These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22405756)

  • 1. Utilization of crude karanj (Pongamia pinnata) oil as a potential feedstock for the synthesis of fatty acid methyl esters.
    Khayoon MS; Olutoye MA; Hameed BH
    Bioresour Technol; 2012 May; 111():175-9. PubMed ID: 22405756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High yield and conversion of biodiesel from a nonedible feedstock (Pongamia pinnata).
    Sharma YC; Singh B; Korstad J
    J Agric Food Chem; 2010 Jan; 58(1):242-7. PubMed ID: 19954216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of fatty acid methyl ester from the transesterification of high- and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium-lanthanum-aluminum mixed-oxides catalyst.
    Syamsuddin Y; Murat MN; Hameed BH
    Bioresour Technol; 2016 Aug; 214():248-252. PubMed ID: 27136612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of biodiesel from crude oil of Pongamia pinnata.
    Karmee SK; Chadha A
    Bioresour Technol; 2005 Sep; 96(13):1425-9. PubMed ID: 15939268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of fatty acid methyl ester from crude jatropha (Jatropha curcas Linnaeus) oil using aluminium oxide modified Mg-Zn heterogeneous catalyst.
    Olutoye MA; Hameed BH
    Bioresour Technol; 2011 Jun; 102(11):6392-8. PubMed ID: 21486692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel.
    Meher LC; Dharmagadda VS; Naik SN
    Bioresour Technol; 2006 Aug; 97(12):1392-7. PubMed ID: 16359862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of fatty acid methyl ester from used vegetable cooking oil by solid reusable Mg 1-x Zn 1+x O2 catalyst.
    Olutoye MA; Hameed BH
    Bioresour Technol; 2011 Feb; 102(4):3819-26. PubMed ID: 21183335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids.
    Berchmans HJ; Hirata S
    Bioresour Technol; 2008 Apr; 99(6):1716-21. PubMed ID: 17531473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavitation assisted synthesis of fatty acid methyl esters from sustainable feedstock in presence of heterogeneous catalyst using two step process.
    Dubey SM; Gole VL; Gogate PR
    Ultrason Sonochem; 2015 Mar; 23():165-73. PubMed ID: 25224854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound assisted synthesis of isopropyl esters from palm fatty acid distillate.
    Deshmane VG; Gogate PR; Pandit AB
    Ultrason Sonochem; 2009 Mar; 16(3):345-50. PubMed ID: 18977682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of biodiesel production from animal fats with high free fatty acid content.
    Encinar JM; Sánchez N; Martínez G; García L
    Bioresour Technol; 2011 Dec; 102(23):10907-14. PubMed ID: 21993326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production.
    Kumar R; Kumar GR; Chandrashekar N
    Bioresour Technol; 2011 Jun; 102(11):6617-20. PubMed ID: 21482464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acid-catalyzed esterification of Zanthoxylum bungeanum seed oil with high free fatty acids for biodiesel production.
    Zhang J; Jiang L
    Bioresour Technol; 2008 Dec; 99(18):8995-8. PubMed ID: 18562195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilisation of Non-Edible Source (
    Al-Muhtaseb AH
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of polar and non-polar algae oil lipids to fatty acid methyl esters with solid acid catalysts--A model compound study.
    Asikainen M; Munter T; Linnekoski J
    Bioresour Technol; 2015 Sep; 191():300-5. PubMed ID: 26004380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalyst-free fatty acid methyl ester production from wet activated sludge under subcritical water and methanol condition.
    Huynh LH; Tran Nguyen PL; Ho QP; Ju YH
    Bioresour Technol; 2012 Nov; 123():112-6. PubMed ID: 22940307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactants from biomass: a two-step cascade reaction for the synthesis of sorbitol fatty acid esters using solid acid catalysts.
    Corma A; Hamid SB; Iborra S; Velty A
    ChemSusChem; 2008; 1(1-2):85-90. PubMed ID: 18605669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Azide derivatives of soybean oil and fatty esters.
    Biswas A; Sharma BK; Willett JL; Advaryu A; Erhan SZ; Cheng HN
    J Agric Food Chem; 2008 Jul; 56(14):5611-6. PubMed ID: 18558698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of methyl esters from relevant palm products in near-critical methanol with modified-zirconia catalysts.
    Laosiripojana N; Kiatkittipong W; Sutthisripok W; Assabumrungrat S
    Bioresour Technol; 2010 Nov; 101(21):8416-23. PubMed ID: 20579870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst.
    Zhang S; Zu YG; Fu YJ; Luo M; Zhang DY; Efferth T
    Bioresour Technol; 2010 Feb; 101(3):931-6. PubMed ID: 19793648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.