These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 22405867)

  • 1. Short-term memory of motor network performance via activity-dependent potentiation of Na+/K+ pump function.
    Zhang HY; Sillar KT
    Curr Biol; 2012 Mar; 22(6):526-31. PubMed ID: 22405867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium pump regulation of locomotor control circuits.
    Picton LD; Zhang H; Sillar KT
    J Neurophysiol; 2017 Aug; 118(2):1070-1081. PubMed ID: 28539392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms underlying the activity-dependent regulation of locomotor network performance by the Na+ pump.
    Zhang HY; Picton L; Li WC; Sillar KT
    Sci Rep; 2015 Nov; 5():16188. PubMed ID: 26541477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimodal modulation of short-term motor memory via dynamic sodium pumps in a vertebrate spinal cord.
    Hachoumi L; Rensner R; Richmond C; Picton L; Zhang H; Sillar KT
    Curr Biol; 2022 Mar; 32(5):1038-1048.e2. PubMed ID: 35104440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks.
    Picton LD; Nascimento F; Broadhead MJ; Sillar KT; Miles GB
    J Neurosci; 2017 Jan; 37(4):906-921. PubMed ID: 28123025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of Xenopus Tadpole Locomotion via Selective Expression of Ih in Excitatory Interneurons.
    Picton LD; Sillar KT; Zhang HY
    Curr Biol; 2018 Dec; 28(24):3911-3923.e2. PubMed ID: 30503615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor control: learning new moves with old pumps.
    Simmers J
    Curr Biol; 2012 Mar; 22(6):R194-6. PubMed ID: 22440804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental changes in spinal neuronal properties, motor network configuration, and neuromodulation at free-swimming stages of Xenopus tadpoles.
    Currie SP; Sillar KT
    J Neurophysiol; 2018 Mar; 119(3):786-795. PubMed ID: 29142093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spike integration and cellular memory in a rhythmic network from Na+/K+ pump current dynamics.
    Pulver SR; Griffith LC
    Nat Neurosci; 2010 Jan; 13(1):53-9. PubMed ID: 19966842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple decision to move in response to touch reveals basic sensory memory and mechanisms for variable response times.
    Koutsikou S; Merrison-Hort R; Buhl E; Ferrario A; Li WC; Borisyuk R; Soffe SR; Roberts A
    J Physiol; 2018 Dec; 596(24):6219-6233. PubMed ID: 30074236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contribution of the NMDA receptor glycine site to rhythm generation during fictive swimming in Xenopus laevis tadpoles.
    Issberner JP; Sillar KT
    Eur J Neurosci; 2007 Nov; 26(9):2556-64. PubMed ID: 17970719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metamorphosis-induced changes in the coupling of spinal thoraco-lumbar motor outputs during swimming in Xenopus laevis.
    Beyeler A; Métais C; Combes D; Simmers J; Le Ray D
    J Neurophysiol; 2008 Sep; 100(3):1372-83. PubMed ID: 18596184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotor corollary activation of trigeminal motoneurons: coupling of discrete motor behaviors.
    Hänzi S; Banchi R; Straka H; Chagnaud BP
    J Exp Biol; 2015 Jun; 218(Pt 11):1748-58. PubMed ID: 26041033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. To swim or not to swim: A population-level model of Xenopus tadpole decision making and locomotor behaviour.
    Borisyuk R; Merrison-Hort R; Soffe SR; Koutsikou S; Li WC
    Biosystems; 2017 Nov; 161():3-14. PubMed ID: 28720508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xenopus laevis: an ideal experimental model for studying the developmental dynamics of neural network assembly and sensory-motor computations.
    Straka H; Simmers J
    Dev Neurobiol; 2012 Apr; 72(4):649-63. PubMed ID: 21834082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypergravity susceptibility of ventral root activity during fictive swimming in tadpoles (Xenopus laevis).
    Böser S; Horn ER
    Arch Ital Biol; 2006 May; 144(2):99-113. PubMed ID: 16642789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a spinal locomotor rheostat.
    Zhang HY; Issberner J; Sillar KT
    Proc Natl Acad Sci U S A; 2011 Jul; 108(28):11674-9. PubMed ID: 21709216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).
    Böser S; Dournon C; Gualandris-Parisot L; Horn E
    Arch Ital Biol; 2008 Mar; 146(1):1-20. PubMed ID: 18666444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of excitatory drive to a spinal locomotor network.
    Roberts A; Li WC; Soffe SR; Wolf E
    Brain Res Rev; 2008 Jan; 57(1):22-8. PubMed ID: 17825424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhythmogenesis in axial locomotor networks: an interspecies comparison.
    Ryczko D; Dubuc R; Cabelguen JM
    Prog Brain Res; 2010; 187():189-211. PubMed ID: 21111209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.