BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

538 related articles for article (PubMed ID: 22406065)

  • 1. Sequential heterotrophy-dilution-photoinduction cultivation for efficient microalgal biomass and lipid production.
    Fan J; Huang J; Li Y; Han F; Wang J; Li X; Wang W; Li S
    Bioresour Technol; 2012 May; 112():206-11. PubMed ID: 22406065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of microalgal biomass and lipid productivities by a model of photoautotrophic culture with heterotrophic cells as seed.
    Han F; Huang J; Li Y; Wang W; Wang J; Fan J; Shen G
    Bioresour Technol; 2012 Aug; 118():431-7. PubMed ID: 22717560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential Heterotrophy-Dilution-Photoinduction Cultivation of Haematococcus pluvialis for efficient production of astaxanthin.
    Wan M; Zhang Z; Wang J; Huang J; Fan J; Yu A; Wang W; Li Y
    Bioresour Technol; 2015 Dec; 198():557-63. PubMed ID: 26433152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production.
    Zheng Y; Chi Z; Lucker B; Chen S
    Bioresour Technol; 2012 Jan; 103(1):484-8. PubMed ID: 22023968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.
    Zheng H; Ma X; Gao Z; Wan Y; Min M; Zhou W; Li Y; Liu Y; Huang H; Chen P; Ruan R
    Appl Biochem Biotechnol; 2015 Oct; 177(3):662-74. PubMed ID: 26234438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol.
    Chen YH; Walker TH
    Biotechnol Lett; 2011 Oct; 33(10):1973-83. PubMed ID: 21691839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Optimization of photoautotrophic lipid production of Chlorella ellipsoidea seeded with heterotrophic cells].
    Wang J; Li Y; Wang W; Huang J; Shen G; Li S; Pan R
    Sheng Wu Gong Cheng Xue Bao; 2014 Oct; 30(10):1639-43. PubMed ID: 25726589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of heterotrophic cultivation of Chlorella sp. for oil production.
    Xie T; Sun Y; Du K; Liang B; Cheng R; Zhang Y
    Bioresour Technol; 2012 Aug; 118():235-42. PubMed ID: 22705529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-mode cultivation of Chlorella protothecoides applying inter-reactors gas transfer improves microalgae biodiesel production.
    Santos CA; Nobre B; Lopes da Silva T; Pinheiro HM; Reis A
    J Biotechnol; 2014 Aug; 184():74-83. PubMed ID: 24862195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids.
    Wang Y; Rischer H; Eriksen NT; Wiebe MG
    Bioresour Technol; 2013 Sep; 144():608-14. PubMed ID: 23907064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced lipid production in Chlorella pyrenoidosa by continuous culture.
    Wen X; Geng Y; Li Y
    Bioresour Technol; 2014 Jun; 161():297-303. PubMed ID: 24717322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harvesting of microalgae by flocculation with poly (γ-glutamic acid).
    Zheng H; Gao Z; Yin J; Tang X; Ji X; Huang H
    Bioresour Technol; 2012 May; 112():212-20. PubMed ID: 22425514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and heterotrophic cultivation of mixotrophic microalgae strains for domestic wastewater treatment and lipid production under dark condition.
    Zhang TY; Wu YH; Zhu SF; Li FM; Hu HY
    Bioresour Technol; 2013 Dec; 149():586-9. PubMed ID: 24140357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of biomass and lipid by the microalgae Chlorella protothecoides with heterotrophic-Cu(II) stressed (HCuS) coupling cultivation.
    Li Y; Mu J; Chen D; Han F; Xu H; Kong F; Xie F; Feng B
    Bioresour Technol; 2013 Nov; 148():283-92. PubMed ID: 24055971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cationic surfactant-based method for simultaneous harvesting and cell disruption of a microalgal biomass.
    Huang WC; Kim JD
    Bioresour Technol; 2013 Dec; 149():579-81. PubMed ID: 24128606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cultivation of Chlorella pyrenoidosa in soybean processing wastewater.
    Hongyang S; Yalei Z; Chunmin Z; Xuefei Z; Jinpeng L
    Bioresour Technol; 2011 Nov; 102(21):9884-90. PubMed ID: 21911289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A symbiotic yeast to enhance heterotrophic and mixotrophic cultivation of Chlorella pyrenoidosa using sucrose as the carbon source.
    Tian YT; Wang X; Cui YH; Wang SK
    Bioprocess Biosyst Eng; 2020 Dec; 43(12):2243-2252. PubMed ID: 32671549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of biomass and lipids by the oleaginous microalgae Monoraphidium sp. QLY-1 through heterotrophic cultivation and photo-chemical modulator induction.
    Zhao Y; Li D; Ding K; Che R; Xu JW; Zhao P; Li T; Ma H; Yu X
    Bioresour Technol; 2016 Jul; 211():669-76. PubMed ID: 27058402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.