These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 22406090)
41. Effect of acyl chain length on transfection efficiency and toxicity of polyethylenimine. Aravindan L; Bicknell KA; Brooks G; Khutoryanskiy VV; Williams AC Int J Pharm; 2009 Aug; 378(1-2):201-10. PubMed ID: 19501146 [TBL] [Abstract][Full Text] [Related]
42. Bioreducible and acid-labile poly(amido amine)s for efficient gene delivery. Yu ZQ; Yan JJ; You YZ; Zhou QH Int J Nanomedicine; 2012; 7():5819-32. PubMed ID: 23209367 [TBL] [Abstract][Full Text] [Related]
43. Crosslinked nanocarriers based upon poly(ethylene imine) for systemic plasmid delivery: in vitro characterization and in vivo studies in mice. Neu M; Germershaus O; Mao S; Voigt KH; Behe M; Kissel T J Control Release; 2007 Apr; 118(3):370-80. PubMed ID: 17316863 [TBL] [Abstract][Full Text] [Related]
44. Minicircle Versus Plasmid DNA Delivery by Receptor-Targeted Polyplexes. Levacic AK; Morys S; Kempter S; Lächelt U; Wagner E Hum Gene Ther; 2017 Oct; 28(10):862-874. PubMed ID: 28826232 [TBL] [Abstract][Full Text] [Related]
45. A PEG-b-poly(disulfide-l-lysine) based redox-responsive cationic polymer for efficient gene transfection. Ullah I; Zhao J; Rukh S; Muhammad K; Guo J; Ren XK; Xia S; Zhang W; Feng Y J Mater Chem B; 2019 Mar; 7(11):1893-1905. PubMed ID: 32255052 [TBL] [Abstract][Full Text] [Related]
46. Twin disulfides as opportunity for improving stability and transfection efficiency of oligoaminoethane polyplexes. Klein PM; Müller K; Gutmann C; Kos P; Krhac Levacic A; Edinger D; Höhn M; Leroux JC; Gauthier MA; Wagner E J Control Release; 2015 May; 205():109-19. PubMed ID: 25553827 [TBL] [Abstract][Full Text] [Related]
47. Poly(ethylene oxide) grafted with short polyethylenimine gives DNA polyplexes with superior colloidal stability, low cytotoxicity, and potent in vitro gene transfection under serum conditions. Zheng M; Zhong Z; Zhou L; Meng F; Peng R; Zhong Z Biomacromolecules; 2012 Mar; 13(3):881-8. PubMed ID: 22339316 [TBL] [Abstract][Full Text] [Related]
48. VEGF siRNA delivery system using arginine-grafted bioreducible poly(disulfide amine). Kim SH; Jeong JH; Kim TI; Kim SW; Bull DA Mol Pharm; 2009; 6(3):718-26. PubMed ID: 19055368 [TBL] [Abstract][Full Text] [Related]
49. Hydroxyl stereochemistry and amine number within poly(glycoamidoamine)s affect intracellular DNA delivery. Liu Y; Reineke TM J Am Chem Soc; 2005 Mar; 127(9):3004-15. PubMed ID: 15740138 [TBL] [Abstract][Full Text] [Related]
50. Incorporation of reversibly cross-linked polyplexes into LPDII vectors for gene delivery. Gosselin MA; Guo W; Lee RJ Bioconjug Chem; 2002; 13(5):1044-53. PubMed ID: 12236787 [TBL] [Abstract][Full Text] [Related]
51. Intracellular Availability of pDNA and mRNA after Transfection: A Comparative Study among Polyplexes, Lipoplexes, and Lipopolyplexes. Gonçalves C; Akhter S; Pichon C; Midoux P Mol Pharm; 2016 Sep; 13(9):3153-63. PubMed ID: 27486998 [TBL] [Abstract][Full Text] [Related]
52. Improving gene delivery efficiency of bioreducible poly(amidoamine)s via grafting with dendritic poly(amidoamine)s. Xue YN; Liu M; Peng L; Huang SW; Zhuo RX Macromol Biosci; 2010 Apr; 10(4):404-14. PubMed ID: 20020519 [TBL] [Abstract][Full Text] [Related]
53. Decationized crosslinked polyplexes for redox-triggered gene delivery. Novo L; van Gaal EV; Mastrobattista E; van Nostrum CF; Hennink WE J Control Release; 2013 Aug; 169(3):246-56. PubMed ID: 23583705 [TBL] [Abstract][Full Text] [Related]
54. Application of poly(2-(dimethylamino)ethyl methacrylate)-based polyplexes for gene transfer into human ovarian carcinoma cells. Verbaan FJ; Klein Klouwenberg P; van Steenis JH; Snel CJ; Boerman O; Hennink WE; Storm G Int J Pharm; 2005 Nov; 304(1-2):185-92. PubMed ID: 16129577 [TBL] [Abstract][Full Text] [Related]
55. Bioreducible-Cationic Poly(amido amine)s for Enhanced Gene Delivery and Osteogenic Differentiation of Tonsil-Derived Mesenchymal Stem Cells. Jeong H; Lee ES; Jung G; Park J; Jeong B; Ryu KH; Hwang NS; Lee H J Biomed Nanotechnol; 2016 May; 12(5):1023-34. PubMed ID: 27305823 [TBL] [Abstract][Full Text] [Related]
56. Reversibly shielded DNA polyplexes based on bioreducible PDMAEMA-SS-PEG-SS-PDMAEMA triblock copolymers mediate markedly enhanced nonviral gene transfection. Zhu C; Zheng M; Meng F; Mickler FM; Ruthardt N; Zhu X; Zhong Z Biomacromolecules; 2012 Mar; 13(3):769-78. PubMed ID: 22277017 [TBL] [Abstract][Full Text] [Related]
57. Layer-by-layer films with bioreducible and nonbioreducible polycations for sequential DNA release. Zou Y; Xie L; Carroll S; Muniz M; Gibson H; Wei WZ; Liu H; Mao G Biomacromolecules; 2014 Nov; 15(11):3965-75. PubMed ID: 25360688 [TBL] [Abstract][Full Text] [Related]
58. Rethinking the impact of the protonable amine density on cationic polymers for gene delivery: A comparative study of partially hydrolyzed poly(2-ethyl-2-oxazoline)s and linear poly(ethylene imine)s. Bauer M; Tauhardt L; Lambermont-Thijs HML; Kempe K; Hoogenboom R; Schubert US; Fischer D Eur J Pharm Biopharm; 2018 Dec; 133():112-121. PubMed ID: 30308239 [TBL] [Abstract][Full Text] [Related]
59. Controlling complexation/decomplexation and sizes of polymer-based electrostatic pDNA polyplexes is one of the key factors in effective transfection. Kim K; Hwang HS; Shim MS; Cho YY; Lee JY; Lee HS; Kang HC Colloids Surf B Biointerfaces; 2019 Dec; 184():110497. PubMed ID: 31536938 [TBL] [Abstract][Full Text] [Related]
60. Pharmaceutical and biological properties of poly(amino acid)/DNA polyplexes. Lucas P; Milroy DA; Thomas BJ; Moss SH; Pouton CW J Drug Target; 1999; 7(2):143-56. PubMed ID: 10617299 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]