These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 22406130)

  • 1. A reverse genetic study of the adaptation of human enterovirus 71 to growth in Chinese hamster ovary cell cultures.
    Zaini Z; Phuektes P; McMinn P
    Virus Res; 2012 May; 165(2):151-6. PubMed ID: 22406130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mouse adaptation of a sub-genogroup B5 strain of human enterovirus 71 is associated with a novel lysine to glutamic acid substitution at position 244 in protein VP1.
    Zaini Z; Phuektes P; McMinn P
    Virus Res; 2012 Jul; 167(1):86-96. PubMed ID: 22575826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The molecular basis of mouse adaptation by human enterovirus 71.
    Chua BH; Phuektes P; Sanders SA; Nicholls PK; McMinn PC
    J Gen Virol; 2008 Jul; 89(Pt 7):1622-1632. PubMed ID: 18559932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection and characterisation of guanidine-resistant mutants of human enterovirus 71.
    Sadeghipour S; Bek EJ; McMinn PC
    Virus Res; 2012 Oct; 169(1):72-9. PubMed ID: 22814431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary trajectory of the VP1 gene of human enterovirus 71 genogroup B and C viruses.
    van der Sanden S; van der Avoort H; Lemey P; Uslu G; Koopmans M
    J Gen Virol; 2010 Aug; 91(Pt 8):1949-1958. PubMed ID: 20375223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single mutation in capsid protein VP1 (Q145E) of a genogroup C4 strain of human enterovirus 71 generates a mouse-virulent phenotype.
    Zaini Z; McMinn P
    J Gen Virol; 2012 Sep; 93(Pt 9):1935-1940. PubMed ID: 22647370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribavirin-resistant mutants of human enterovirus 71 express a high replication fidelity phenotype during growth in cell culture.
    Sadeghipour S; Bek EJ; McMinn PC
    J Virol; 2013 Feb; 87(3):1759-69. PubMed ID: 23175376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China.
    Zhang Y; Tan XJ; Wang HY; Yan DM; Zhu SL; Wang DY; Ji F; Wang XJ; Gao YJ; Chen L; An HQ; Li DX; Wang SW; Xu AQ; Wang ZJ; Xu WB
    J Clin Virol; 2009 Apr; 44(4):262-7. PubMed ID: 19269888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in VP2 and VP1 capsid proteins increase infectivity and mouse lethality of enterovirus 71 by virus binding and RNA accumulation enhancement.
    Huang SW; Wang YF; Yu CK; Su IJ; Wang JR
    Virology; 2012 Jan; 422(1):132-43. PubMed ID: 22078110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse Genetic Analysis of Adaptive Mutations within the Capsid Proteins of Enterovirus 71 (EV-A71) Strains Necessary for Infection of CHO-K1 Cells.
    Victorio CBL; Xu Y; Ng Q; Chow VTK; Chua KB
    Virol Sin; 2020 Feb; 35(1):110-114. PubMed ID: 31637630
    [No Abstract]   [Full Text] [Related]  

  • 11. Defective endogenous retrovirus-like sequences and particles of Chinese hamster ovary cells.
    Anderson KP; Lie YS; Low MA; Williams SR; Wurm FM; Dinowitz M
    Dev Biol Stand; 1991; 75():123-32. PubMed ID: 1665459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic evidence for a recent spread of two populations of human enterovirus 71 in European countries.
    Mirand A; Schuffenecker I; Henquell C; Billaud G; Jugie G; Falcon D; Mahul A; Archimbaud C; Terletskaia-Ladwig E; Diedrich S; Huemer HP; Enders M; Lina B; Peigue-Lafeuille H; Bailly JL
    J Gen Virol; 2010 Sep; 91(Pt 9):2263-77. PubMed ID: 20505012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic changes of coxsackievirus A16 and enterovirus 71 isolated from hand, foot, and mouth disease patients in Toyama, Japan between 1981 and 2007.
    Iwai M; Masaki A; Hasegawa S; Obara M; Horimoto E; Nakamura K; Tanaka Y; Endo K; Tanaka K; Ueda J; Shiraki K; Kurata T; Takizawa T
    Jpn J Infect Dis; 2009 Jul; 62(4):254-9. PubMed ID: 19628900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acids of Coxsackie B5 virus are critical for infection of the murine insulinoma cell line, MIN-6.
    Al-Hello H; Ylipaasto P; Smura T; Rieder E; Hovi T; Roivainen M
    J Med Virol; 2009 Feb; 81(2):296-304. PubMed ID: 19107967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient infection of buffalo rat liver-resistant cells by encephalomyocarditis virus requires binding to cell surface sialic acids.
    Guy M; Chilmonczyk S; Crucière C; Eloit M; Bakkali-Kassimi L
    J Gen Virol; 2009 Jan; 90(Pt 1):187-96. PubMed ID: 19088288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermotolerance and intracellular pH in two Chinese hamster cell lines adapted to growth at low pH.
    Wahl ML; Coss RA; Bobyock SB; Leeper DB; Owen CS
    J Cell Physiol; 1996 Feb; 166(2):438-45. PubMed ID: 8592004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of mutation and comparison of mutation profiles in the hprt gene of Chinese hamster ovary cells treated with benzo[a]pyrene trans-7,8-diol-anti-9,10-epoxide, 1-nitrobenzo[a]pyrene trans-7,8-diol-anti-9,10-epoxide, and 3-nitrobenzo[a]pyrene trans-7,8- diol-anti-9,10-epoxide.
    Zhan DJ; Heflich RH; Fu PP
    Environ Mol Mutagen; 1996; 27(1):19-29. PubMed ID: 8625944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chinese hamster ovary cells resistant to the topoisomerase II catalytic inhibitor ICRF-159: a Tyr49Phe mutation confers high-level resistance to bisdioxopiperazines.
    Sehested M; Wessel I; Jensen LH; Holm B; Oliveri RS; Kenwrick S; Creighton AM; Nitiss JL; Jensen PB
    Cancer Res; 1998 Apr; 58(7):1460-8. PubMed ID: 9537249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of high passage cultivation on CHO cells: a global analysis.
    Beckmann TF; Krämer O; Klausing S; Heinrich C; Thüte T; Büntemeyer H; Hoffrogge R; Noll T
    Appl Microbiol Biotechnol; 2012 May; 94(3):659-71. PubMed ID: 22331235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A C-terminal amino acid substitution in the gamma-chain caused by a novel heterozygous frameshift mutation (Fibrinogen Matsumoto VII) results in hypofibrinogenaemia.
    Fujihara N; Haneishi A; Yamauchi K; Terasawa F; Ito T; Ishida F; Okumura N
    Thromb Haemost; 2010 Aug; 104(2):213-23. PubMed ID: 20589319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.