BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 22406507)

  • 1. Polyethylene glycol-containing polyurethane hydrogel coatings for improving the biocompatibility of neural electrodes.
    Rao L; Zhou H; Li T; Li C; Duan YY
    Acta Biomater; 2012 Jul; 8(6):2233-42. PubMed ID: 22406507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode-neural tissue interface.
    Lu Y; Wang D; Li T; Zhao X; Cao Y; Yang H; Duan YY
    Biomaterials; 2009 Sep; 30(25):4143-51. PubMed ID: 19467702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface.
    He L; Lin D; Wang Y; Xiao Y; Che J
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):273-9. PubMed ID: 21676598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyurethane/poly(vinyl alcohol) hydrogel coating improves the cytocompatibility of neural electrodes.
    Li M; Zhou HH; Li T; Li CY; Xia ZY; Duan YY
    Neural Regen Res; 2015 Dec; 10(12):2048-53. PubMed ID: 26889197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polylysine-modified PEG-based hydrogels to enhance the neuro-electrode interface.
    Rao SS; Han N; Winter JO
    J Biomater Sci Polym Ed; 2011; 22(4-6):611-25. PubMed ID: 20566048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for neural interfaces.
    Lu Y; Li T; Zhao X; Li M; Cao Y; Yang H; Duan YY
    Biomaterials; 2010 Jul; 31(19):5169-81. PubMed ID: 20382421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays.
    He W; McConnell GC; Bellamkonda RV
    J Neural Eng; 2006 Dec; 3(4):316-26. PubMed ID: 17124336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale neuro-integrative coatings for neural implants.
    He W; Bellamkonda RV
    Biomaterials; 2005 Jun; 26(16):2983-90. PubMed ID: 15603793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface immobilization of neural adhesion molecule L1 for improving the biocompatibility of chronic neural probes: In vitro characterization.
    Azemi E; Stauffer WR; Gostock MS; Lagenaur CF; Cui XT
    Acta Biomater; 2008 Sep; 4(5):1208-17. PubMed ID: 18420473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces.
    Heo DN; Song SJ; Kim HJ; Lee YJ; Ko WK; Lee SJ; Lee D; Park SJ; Zhang LG; Kang JY; Do SH; Lee SH; Kwon IK
    Acta Biomater; 2016 Jul; 39():25-33. PubMed ID: 27163406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological stability of polyurethane modified with covalent attachment of di-tert-butyl-phenol.
    Stachelek SJ; Alferiev I; Fulmer J; Ischiropoulos H; Levy RJ
    J Biomed Mater Res A; 2007 Sep; 82(4):1004-11. PubMed ID: 17370325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protease-degradable PEG-maleimide coating with on-demand release of IL-1Ra to improve tissue response to neural electrodes.
    Gutowski SM; Shoemaker JT; Templeman KL; Wei Y; Latour RA; Bellamkonda RV; LaPlaca MC; GarcĂ­a AJ
    Biomaterials; 2015 Mar; 44():55-70. PubMed ID: 25617126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants.
    Prasad A; Xue QS; Sankar V; Nishida T; Shaw G; Streit WJ; Sanchez JC
    J Neural Eng; 2012 Oct; 9(5):056015. PubMed ID: 23010756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces.
    Moxon KA; Hallman S; Aslani A; Kalkhoran NM; Lelkes PI
    J Biomater Sci Polym Ed; 2007; 18(10):1263-81. PubMed ID: 17939885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thin microelectrodes reduce GFAP expression in the implant site in rodent somatosensory cortex.
    Stice P; Gilletti A; Panitch A; Muthuswamy J
    J Neural Eng; 2007 Jun; 4(2):42-53. PubMed ID: 17409479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ex vivo method for evaluating the biocompatibility of neural electrodes in rat brain slice cultures.
    Koeneman BA; Lee KK; Singh A; He J; Raupp GB; Panitch A; Capco DG
    J Neurosci Methods; 2004 Aug; 137(2):257-63. PubMed ID: 15262069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility assessment of insulating silicone polymer coatings using an in vitro glial scar assay.
    Achyuta AK; Polikov VS; White AJ; Lewis HG; Murthy SK
    Macromol Biosci; 2010 Aug; 10(8):872-80. PubMed ID: 20503195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of biocompatible hydrogel coatings for implantable medical devices using Fenton-type reaction.
    Butruk B; Trzaskowski M; Ciach T
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1601-9. PubMed ID: 24364966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can histology solve the riddle of the nonfunctioning electrode? Factors influencing the biocompatibility of brain machine interfaces.
    Linsmeier CE; Thelin J; Danielsen N
    Prog Brain Res; 2011; 194():181-9. PubMed ID: 21867803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio.
    Baranauskas G; Maggiolini E; Castagnola E; Ansaldo A; Mazzoni A; Angotzi GN; Vato A; Ricci D; Panzeri S; Fadiga L
    J Neural Eng; 2011 Dec; 8(6):066013. PubMed ID: 22064890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.