BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 22406520)

  • 1. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.
    Kajma A; Szewczyk A
    Biochim Biophys Acta; 2012 Oct; 1817(10):1867-78. PubMed ID: 22406520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What do we not know about mitochondrial potassium channels?
    Laskowski M; Augustynek B; Kulawiak B; Koprowski P; Bednarczyk P; Jarmuszkiewicz W; Szewczyk A
    Biochim Biophys Acta; 2016 Aug; 1857(8):1247-1257. PubMed ID: 26951942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tertiapin-Q blocks recombinant and native large conductance K+ channels in a use-dependent manner.
    Kanjhan R; Coulson EJ; Adams DJ; Bellingham MC
    J Pharmacol Exp Ther; 2005 Sep; 314(3):1353-61. PubMed ID: 15947038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How many types of large conductance Ca⁺²-activated potassium channels exist in brain mitochondrial inner membrane: evidence for a new mitochondrial large conductance Ca²⁺-activated potassium channel in brain mitochondria.
    Fahanik-Babaei J; Eliassi A; Saghiri R
    Neuroscience; 2011 Dec; 199():125-32. PubMed ID: 21996476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen-sensitive reduction in Ca²⁺-activated K⁺ channel open probability in turtle cerebrocortex.
    Rodgers-Garlick CI; Hogg DW; Buck LT
    Neuroscience; 2013 May; 237():243-54. PubMed ID: 23384611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ammonium ion enhances the calcium-dependent gating of a mammalian large conductance, calcium-sensitive K+ channel.
    Braun AP
    Can J Physiol Pharmacol; 2001 Nov; 79(11):919-23. PubMed ID: 11760093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mitochondrial ion channels].
    Skalska J; Debska-Vielhaber G; Głab M; Kulawiak B; Malińska D; Koszela-Piotrowska I; Bednarczyk P; Dołowy K; Szewczyk A
    Postepy Biochem; 2006; 52(2):137-44. PubMed ID: 17078503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gating and inward rectifying properties of the MthK K+ channel with and without the gating ring.
    Li Y; Berke I; Chen L; Jiang Y
    J Gen Physiol; 2007 Feb; 129(2):109-20. PubMed ID: 17261840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line.
    Siemen D; Loupatatzis C; Borecky J; Gulbins E; Lang F
    Biochem Biophys Res Commun; 1999 Apr; 257(2):549-54. PubMed ID: 10198249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved method for acute isolation of neurons from the hippocampus of adult rats suitable for patch-clamping study.
    Li XM; Li JG; Yang JM; Hu P; Li XW; Wang Y; Qin LN; Gao TM
    Sheng Li Xue Bao; 2004 Feb; 56(1):112-7. PubMed ID: 14985840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cytosolic inactivation domains of BKi channels in rat chromaffin cells do not behave like simple, open-channel blockers.
    Solaro CR; Ding JP; Li ZW; Lingle CJ
    Biophys J; 1997 Aug; 73(2):819-30. PubMed ID: 9251798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slo3 K+ channels: voltage and pH dependence of macroscopic currents.
    Zhang X; Zeng X; Lingle CJ
    J Gen Physiol; 2006 Sep; 128(3):317-36. PubMed ID: 16940555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pore helix is involved in stabilizing the open state of inwardly rectifying K+ channels.
    Alagem N; Yesylevskyy S; Reuveny E
    Biophys J; 2003 Jul; 85(1):300-12. PubMed ID: 12829485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional modulation of the ATP-sensitive potassium channel by extracellular signal-regulated kinase-mediated phosphorylation.
    Lin YF; Chai Y
    Neuroscience; 2008 Mar; 152(2):371-80. PubMed ID: 18280666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial potassium channels.
    Szewczyk A; Jarmuszkiewicz W; Kunz WS
    IUBMB Life; 2009 Feb; 61(2):134-43. PubMed ID: 19165895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single channel studies of the ATP-regulated potassium channel in brain mitochondria.
    Choma K; Bednarczyk P; Koszela-Piotrowska I; Kulawiak B; Kudin A; Kunz WS; Dołowy K; Szewczyk A
    J Bioenerg Biomembr; 2009 Aug; 41(4):323-34. PubMed ID: 19821034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pH-sensitive potassium conductance (TASK) and its function in the murine gastrointestinal tract.
    Cho SY; Beckett EA; Baker SA; Han I; Park KJ; Monaghan K; Ward SM; Sanders KM; Koh SD
    J Physiol; 2005 May; 565(Pt 1):243-59. PubMed ID: 15774516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Kir channels by intracellular pH and extracellular K(+): mechanisms of coupling.
    Dahlmann A; Li M; Gao Z; McGarrigle D; Sackin H; Palmer LG
    J Gen Physiol; 2004 Apr; 123(4):441-54. PubMed ID: 15051808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apical potassium channels in the rat connecting tubule.
    Frindt G; Palmer LG
    Am J Physiol Renal Physiol; 2004 Nov; 287(5):F1030-7. PubMed ID: 15280155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-dependent antagonist/agonist actions of taurine on Ca(2+)-activated potassium channels of rat skeletal muscle fibers.
    Tricarico D; Barbieri M; Conte Camerino D
    J Pharmacol Exp Ther; 2001 Sep; 298(3):1167-71. PubMed ID: 11504816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.