These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 22406683)

  • 1. New aspects of the Warburg effect in cancer cell biology.
    Bensinger SJ; Christofk HR
    Semin Cell Dev Biol; 2012 Jun; 23(4):352-61. PubMed ID: 22406683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Warburg effect: persistence of stem-cell metabolism in cancers as a failure of differentiation.
    Riester M; Xu Q; Moreira A; Zheng J; Michor F; Downey RJ
    Ann Oncol; 2018 Jan; 29(1):264-270. PubMed ID: 29045536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic glycolysis in cancers: implications for the usability of oxygen-responsive genes and fluorodeoxyglucose-PET as markers of tissue hypoxia.
    Busk M; Horsman MR; Kristjansen PE; van der Kogel AJ; Bussink J; Overgaard J
    Int J Cancer; 2008 Jun; 122(12):2726-34. PubMed ID: 18351643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction to the molecular basis of cancer metabolism and the Warburg effect.
    Ngo DC; Ververis K; Tortorella SM; Karagiannis TC
    Mol Biol Rep; 2015 Apr; 42(4):819-23. PubMed ID: 25672512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The reverse Warburg effect and 18F-FDG uptake in non-small cell lung cancer A549 in mice: a pilot study.
    Zhang G; Li J; Wang X; Ma Y; Yin X; Wang F; Zheng H; Duan X; Postel GC; Li XF
    J Nucl Med; 2015 Apr; 56(4):607-12. PubMed ID: 25722447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-translational modifications and the Warburg effect.
    Hitosugi T; Chen J
    Oncogene; 2014 Aug; 33(34):4279-85. PubMed ID: 24096483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FDG uptake in cancer: a continuing debate.
    Peppicelli S; Andreucci E; Ruzzolini J; Bianchini F; Calorini L
    Theranostics; 2020; 10(7):2944-2948. PubMed ID: 32194847
    [No Abstract]   [Full Text] [Related]  

  • 10. Correlation between in vivo 18F-FDG PET and immunohistochemical markers of glucose uptake and metabolism in pheochromocytoma and paraganglioma.
    van Berkel A; Rao JU; Kusters B; Demir T; Visser E; Mensenkamp AR; van der Laak JA; Oosterwijk E; Lenders JW; Sweep FC; Wevers RA; Hermus AR; Langenhuijsen JF; Kunst DP; Pacak K; Gotthardt M; Timmers HJ
    J Nucl Med; 2014 Aug; 55(8):1253-9. PubMed ID: 24925884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer stem cell metabolism: a potential target for cancer therapy.
    Deshmukh A; Deshpande K; Arfuso F; Newsholme P; Dharmarajan A
    Mol Cancer; 2016 Nov; 15(1):69. PubMed ID: 27825361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes.
    Levine AJ; Puzio-Kuter AM
    Science; 2010 Dec; 330(6009):1340-4. PubMed ID: 21127244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic reprogramming: the emerging concept and associated therapeutic strategies.
    Yoshida GJ
    J Exp Clin Cancer Res; 2015 Oct; 34():111. PubMed ID: 26445347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FDG-based quantitative comparison of glucose metabolism in vitro, exemplified by a head-to-head comparison between a triple-negative breast cancer cell line and a non-malignant foetal cell line.
    Munthe E; Riss PJ; Saga TA; Haraldsen I; Grad I; Bogsrud TV; Bach-Gansmo T
    Clin Physiol Funct Imaging; 2018 Jan; 38(1):34-37. PubMed ID: 27297457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring response with FDG-PET: methodological aspects.
    Allen-Auerbach M; Weber WA
    Oncologist; 2009 Apr; 14(4):369-77. PubMed ID: 19357228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic alterations in cancer cells and therapeutic implications.
    Hammoudi N; Ahmed KB; Garcia-Prieto C; Huang P
    Chin J Cancer; 2011 Aug; 30(8):508-25. PubMed ID: 21801600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNAs and altered metabolism of clear cell renal cell carcinoma: Potential role as aerobic glycolysis biomarkers.
    Morais M; Dias F; Teixeira AL; Medeiros R
    Biochim Biophys Acta Gen Subj; 2017 Sep; 1861(9):2175-2185. PubMed ID: 28579513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of tumor glucose utilization with positron emission tomography.
    Buerkle A; Weber WA
    Cancer Metastasis Rev; 2008 Dec; 27(4):545-54. PubMed ID: 18523732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization.
    Vallabhajosula S
    Semin Nucl Med; 2007 Nov; 37(6):400-19. PubMed ID: 17920348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneity in Cancer Metabolism: New Concepts in an Old Field.
    Gentric G; Mieulet V; Mechta-Grigoriou F
    Antioxid Redox Signal; 2017 Mar; 26(9):462-485. PubMed ID: 27228792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.