BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 22406746)

  • 1. A systems approach identifies HIPK2 as a key regulator of kidney fibrosis.
    Jin Y; Ratnam K; Chuang PY; Fan Y; Zhong Y; Dai Y; Mazloom AR; Chen EY; D'Agati V; Xiong H; Ross MJ; Chen N; Ma'ayan A; He JC
    Nat Med; 2012 Mar; 18(4):580-8. PubMed ID: 22406746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Inhibitor of Homeodomain Interacting Protein Kinase 2 Mitigates Kidney Fibrosis through Inhibition of the TGF-
    Liu R; Das B; Xiao W; Li Z; Li H; Lee K; He JC
    J Am Soc Nephrol; 2017 Jul; 28(7):2133-2143. PubMed ID: 28220029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The antihelmenthic phosphate niclosamide impedes renal fibrosis by inhibiting homeodomain-interacting protein kinase 2 expression.
    Chang X; Zhen X; Liu J; Ren X; Hu Z; Zhou Z; Zhu F; Ding K; Nie J
    Kidney Int; 2017 Sep; 92(3):612-624. PubMed ID: 28318631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. miR-141 regulates TGF-β1-induced epithelial-mesenchymal transition through repression of HIPK2 expression in renal tubular epithelial cells.
    Huang Y; Tong J; He F; Yu X; Fan L; Hu J; Tan J; Chen Z
    Int J Mol Med; 2015 Feb; 35(2):311-8. PubMed ID: 25421593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Homeodomain-Interacting Protein Kinase 2 in the Pathogenesis of Tissue Fibrosis in Keloid-Derived Keratinocytes.
    Zhao YX; Zhang GY; Wang AY; Chen YH; Lin DM; Li QF
    Ann Plast Surg; 2017 Dec; 79(6):546-551. PubMed ID: 29053518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of HIPK2 in kidney fibrosis.
    Fan Y; Wang N; Chuang P; He JC
    Kidney Int Suppl (2011); 2014 Nov; 4(1):97-101. PubMed ID: 26312158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diverse roles of TGF-β receptor II in renal fibrosis and inflammation in vivo and in vitro.
    Meng XM; Huang XR; Xiao J; Chen HY; Zhong X; Chung AC; Lan HY
    J Pathol; 2012 Jun; 227(2):175-88. PubMed ID: 22190171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HIPK2 C-terminal domain inhibits NF-κB signaling and renal inflammation in kidney injury.
    Feng Y; Li Z; Wang H; Liu BC; Lee K; He JC
    JCI Insight; 2024 Mar; 9(8):. PubMed ID: 38512421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox control of p53 in the transcriptional regulation of TGF-β1 target genes through SMAD cooperativity.
    Overstreet JM; Samarakoon R; Meldrum KK; Higgins PJ
    Cell Signal; 2014 Jul; 26(7):1427-36. PubMed ID: 24613410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tubular HIPK2 is a key contributor to renal fibrosis.
    Xiao W; E J; Bao L; Fan Y; Jin Y; Wang A; Bauman D; Li Z; Zheng YL; Liu R; Lee K; He JC
    JCI Insight; 2020 Sep; 5(17):. PubMed ID: 32701510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway.
    Li R; Chung AC; Dong Y; Yang W; Zhong X; Lan HY
    Kidney Int; 2013 Dec; 84(6):1129-44. PubMed ID: 23868013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockdown of HIPK2 attenuates the pro-fibrogenic response of hepatic stellate cells induced by TGF-β1.
    He P; Yu ZJ; Sun CY; Jiao SJ; Jiang HQ
    Biomed Pharmacother; 2017 Jan; 85():575-581. PubMed ID: 27890429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polystyrene nanoplastics induce cardiotoxicity by upregulating HIPK2 and activating the P53 and TGF-β1/Smad3 pathways.
    Yang JZ; Zhang KK; Hsu C; Miao L; Chen LJ; Liu JL; Li JH; Li XW; Zeng JH; Chen L; Li JH; Xie XL; Wang Q
    J Hazard Mater; 2024 Aug; 474():134823. PubMed ID: 38852254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR.
    Winter M; Sombroek D; Dauth I; Moehlenbrink J; Scheuermann K; Crone J; Hofmann TG
    Nat Cell Biol; 2008 Jul; 10(7):812-24. PubMed ID: 18536714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel RAS inhibitor 25-O-methylalisol F attenuates epithelial-to-mesenchymal transition and tubulo-interstitial fibrosis by selectively inhibiting TGF-β-mediated Smad3 phosphorylation.
    Chen H; Yang T; Wang MC; Chen DQ; Yang Y; Zhao YY
    Phytomedicine; 2018 Mar; 42():207-218. PubMed ID: 29655688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zyxin is a critical regulator of the apoptotic HIPK2-p53 signaling axis.
    Crone J; Glas C; Schultheiss K; Moehlenbrink J; Krieghoff-Henning E; Hofmann TG
    Cancer Res; 2011 Mar; 71(6):2350-9. PubMed ID: 21248071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The SIAH1-HIPK2-p53ser46 Damage Response Pathway is Involved in Temozolomide-Induced Glioblastoma Cell Death.
    He Y; Roos WP; Wu Q; Hofmann TG; Kaina B
    Mol Cancer Res; 2019 May; 17(5):1129-1141. PubMed ID: 30796178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transforming growth factor-{beta}1 induces Smad3-dependent {beta}1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis.
    Yeh YC; Wei WC; Wang YK; Lin SC; Sung JM; Tang MJ
    Am J Pathol; 2010 Oct; 177(4):1743-54. PubMed ID: 20709799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIPK2 attenuates bleomycin-induced pulmonary fibrosis by suppressing the Wnt/β-catenin signaling pathway.
    Wang F; Zhang Y; Ren J; Yu W
    Folia Histochem Cytobiol; 2022; 60(3):247-259. PubMed ID: 36004621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How cells switch HIPK2 on and off.
    Sombroek D; Hofmann TG
    Cell Death Differ; 2009 Feb; 16(2):187-94. PubMed ID: 18974774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.