BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 22406759)

  • 1. An empirical model to predict the distribution of iron micro-particles around an injection well in a sandy aquifer.
    Comba S; Braun J
    J Contam Hydrol; 2012 May; 132():1-11. PubMed ID: 22406759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guar gum solutions for improved delivery of iron particles in porous media (part 2): iron transport tests and modeling in radial geometry.
    Tosco T; Gastone F; Sethi R
    J Contam Hydrol; 2014 Oct; 166():34-51. PubMed ID: 25063698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guar gum solutions for improved delivery of iron particles in porous media (part 1): porous medium rheology and guar gum-induced clogging.
    Gastone F; Tosco T; Sethi R
    J Contam Hydrol; 2014 Oct; 166():23-33. PubMed ID: 25065767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum.
    Tiraferri A; Chen KL; Sethi R; Elimelech M
    J Colloid Interface Sci; 2008 Aug; 324(1-2):71-9. PubMed ID: 18508073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure-controlled injection of guar gum stabilized microscale zerovalent iron for groundwater remediation.
    Luna M; Gastone F; Tosco T; Sethi R; Velimirovic M; Gemoets J; Muyshondt R; Sapion H; Klaas N; Bastiaens L
    J Contam Hydrol; 2015 Oct; 181():46-58. PubMed ID: 25971233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field assessment of guar gum stabilized microscale zerovalent iron particles for in-situ remediation of 1,1,1-trichloroethane.
    Velimirovic M; Tosco T; Uyttebroek M; Luna M; Gastone F; De Boer C; Klaas N; Sapion H; Eisenmann H; Larsson PO; Braun J; Sethi R; Bastiaens L
    J Contam Hydrol; 2014 Aug; 164():88-99. PubMed ID: 24963597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green stabilization of microscale iron particles using guar gum: bulk rheology, sedimentation rate and enzymatic degradation.
    Gastone F; Tosco T; Sethi R
    J Colloid Interface Sci; 2014 May; 421():33-43. PubMed ID: 24594029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new physical model based on cascading column experiments to reproduce the radial flow and transport of micro-iron particles.
    Comba S; Braun J
    J Contam Hydrol; 2012 Oct; 140-141():1-11. PubMed ID: 22940707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guar gum coupled microscale ZVI for in situ treatment of CAHs: continuous-flow column study.
    Velimirovic M; Simons Q; Bastiaens L
    J Hazard Mater; 2014 Jan; 265():20-9. PubMed ID: 24333711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and retention of high concentrated nano-Fe/Cu particles through highly flow-rated packed sand column.
    Hosseini SM; Tosco T
    Water Res; 2013 Jan; 47(1):326-38. PubMed ID: 23141767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of non-newtonian suspensions of highly concentrated micro- and nanoscale iron particles in porous media: a modeling approach.
    Tosco T; Sethi R
    Environ Sci Technol; 2010 Dec; 44(23):9062-8. PubMed ID: 21058641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivity recovery of guar gum coupled mZVI by means of enzymatic breakdown and rinsing.
    Velimirovic M; Chen H; Simons Q; Bastiaens L
    J Contam Hydrol; 2012 Nov; 142-143():1-10. PubMed ID: 23047137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of guar gum nanoparticles.
    Soumya RS; Ghosh S; Abraham ET
    Int J Biol Macromol; 2010 Mar; 46(2):267-9. PubMed ID: 19941891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer.
    Bennett P; He F; Zhao D; Aiken B; Feldman L
    J Contam Hydrol; 2010 Jul; 116(1-4):35-46. PubMed ID: 20542350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-depth understanding of transport behavior of sulfided nano zerovalent iron/reduced graphene oxide@guar gum slurry: Stability and mobility.
    Ma Y; You W; Yang Z; Ren Z; Jing Q
    J Environ Sci (China); 2024 Oct; 144():1-14. PubMed ID: 38802222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand.
    Phenrat T; Kim HJ; Fagerlund F; Illangasekare T; Lowry GV
    J Contam Hydrol; 2010 Nov; 118(3-4):152-64. PubMed ID: 20926157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of magnesium and iron on the hydration and hydrolysis of guar gum.
    Vega-Cantu YI; Hauge RH; Norman LR; Powell RJ; Billups WE
    Biomacromolecules; 2006 Feb; 7(2):441-5. PubMed ID: 16471914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloid and heavy metal transport at landfill sites in direct contact with groundwater.
    Baumann T; Fruhstorfer P; Klein T; Niessner R
    Water Res; 2006 Aug; 40(14):2776-86. PubMed ID: 16820185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of injection velocity and particle concentration on transport of nanoscale zero-valent iron and hydraulic conductivity in saturated porous media.
    Strutz TJ; Hornbruch G; Dahmke A; Köber R
    J Contam Hydrol; 2016 Aug; 191():54-65. PubMed ID: 27244572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a trajectory model for predicting attachment of submicrometer particles in porous media: stabilized NZVI as a case study.
    Wei YT; Wu SC
    Environ Sci Technol; 2010 Dec; 44(23):8996-9002. PubMed ID: 21067208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.