These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 22406816)

  • 1. On the temperature dependence of ballistic Coulomb drag in nanowires.
    Muradov MI; Gurevich VL
    J Phys Condens Matter; 2012 Apr; 24(13):135304. PubMed ID: 22406816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coulomb drag in a longitudinal magnetic field in quantum wells.
    Gurevich VL; Muradov MI
    J Phys Condens Matter; 2005 Jan; 17(1):87-98. PubMed ID: 21690671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growing one-dimensional metallic nanowires by dielectrophoresis.
    Ranjan N; Vinzelberg H; Mertig M
    Small; 2006 Dec; 2(12):1490-6. PubMed ID: 17193011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory.
    Kim WY; Kim KS
    J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectrophoretic growth of metallic nanowires and microwires: theory and experiments.
    Ranjan N; Mertig M; Cuniberti G; Pompe W
    Langmuir; 2010 Jan; 26(1):552-9. PubMed ID: 19924880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1D-1D Coulomb drag signature of a Luttinger liquid.
    Laroche D; Gervais G; Lilly MP; Reno JL
    Science; 2014 Feb; 343(6171):631-4. PubMed ID: 24457214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of coulomb drag between finite-length quantum wires.
    Peguiron J; Bruder C; Trauzettel B
    Phys Rev Lett; 2007 Aug; 99(8):086404. PubMed ID: 17930966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical transport properties of single undoped and n-type doped InN nanowires.
    Richter T; Lüth H; Schäpers T; Meijers R; Jeganathan K; Estévez Hernández S; Calarco R; Marso M
    Nanotechnology; 2009 Oct; 20(40):405206. PubMed ID: 19738304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transport properties of atomic carbon nanowires between graphene electrodes.
    Shen L; Zeng M; Yang SW; Zhang C; Wang X; Feng Y
    J Am Chem Soc; 2010 Aug; 132(33):11481-6. PubMed ID: 20677763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room-temperature Coulomb staircase in semiconducting InP nanowires modulated with light illumination.
    Yamada T; Yamada H; Lohn AJ; Kobayashi NP
    Nanotechnology; 2011 Feb; 22(5):055201. PubMed ID: 21178228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An atomistic model and key parameters for devising single molecular nanowire sensors.
    Lou P; Lee JY
    Phys Chem Chem Phys; 2008 Feb; 10(6):828-33. PubMed ID: 18231685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative Coulomb drag in a one-dimensional wire.
    Yamamoto M; Stopa M; Tokura Y; Hirayama Y; Tarucha S
    Science; 2006 Jul; 313(5784):204-7. PubMed ID: 16840694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial hydrodynamic drag on nanowires embedded in thin oil films and protein layers.
    Lee MH; Lapointe CP; Reich DH; Stebe KJ; Leheny RL
    Langmuir; 2009 Jul; 25(14):7976-82. PubMed ID: 19594180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant electron scattering by defects in single-walled carbon nanotubes.
    Bockrath M; Liang W; Bozovic D; Hafner JH; Lieber CM; Tinkham M; Park H
    Science; 2001 Jan; 291(5502):283-5. PubMed ID: 11209073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positive and negative Coulomb drag in vertically integrated one-dimensional quantum wires.
    Laroche D; Gervais G; Lilly MP; Reno JL
    Nat Nanotechnol; 2011 Oct; 6(12):793-7. PubMed ID: 22036809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-dependent electron transport through a quantum wire on a surface.
    Kwapiński T
    J Phys Condens Matter; 2012 Feb; 24(5):055302. PubMed ID: 22248492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of the field effect mobility of solution-grown germanium nanowires.
    Schricker AD; Joshi SV; Hanrath T; Banerjee SK; Korgel BA
    J Phys Chem B; 2006 Apr; 110(13):6816-23. PubMed ID: 16570990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-temperature synthesis of indium tin oxide nanowires as the transparent electrodes for organic light emitting devices.
    Kee YY; Tan SS; Yong TK; Nee CH; Yap SS; Tou TY; Sáfrán G; Horváth ZE; Moscatello JP; Yap YK
    Nanotechnology; 2012 Jan; 23(2):025706. PubMed ID: 22166812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Length-dependent conductance of molecular wires and contact resistance in metal-molecule-metal junctions.
    Liu H; Wang N; Zhao J; Guo Y; Yin X; Boey FY; Zhang H
    Chemphyschem; 2008 Jul; 9(10):1416-24. PubMed ID: 18512822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insulating state and breakdown of Fermi liquid description in molecular-scale single-crystalline wires of gold.
    Chandni U; Kundu P; Singh AK; Ravishankar N; Ghosh A
    ACS Nano; 2011 Oct; 5(10):8398-403. PubMed ID: 21942565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.