BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 22406822)

  • 21. Dll4 and Notch signalling couples sprouting angiogenesis and artery formation.
    Pitulescu ME; Schmidt I; Giaimo BD; Antoine T; Berkenfeld F; Ferrante F; Park H; Ehling M; Biljes D; Rocha SF; Langen UH; Stehling M; Nagasawa T; Ferrara N; Borggrefe T; Adams RH
    Nat Cell Biol; 2017 Aug; 19(8):915-927. PubMed ID: 28714968
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Notch pathway targets proangiogenic regulator Sox17 to restrict angiogenesis.
    Lee SH; Lee S; Yang H; Song S; Kim K; Saunders TL; Yoon JK; Koh GY; Kim I
    Circ Res; 2014 Jul; 115(2):215-26. PubMed ID: 24755984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling.
    Benedito R; Rocha SF; Woeste M; Zamykal M; Radtke F; Casanovas O; Duarte A; Pytowski B; Adams RH
    Nature; 2012 Mar; 484(7392):110-4. PubMed ID: 22426001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Delta-like ligand 4 regulates vascular endothelial growth factor receptor 2-driven luteal angiogenesis through induction of a tip/stalk phenotype in proliferating endothelial cells.
    García-Pascual CM; Zimmermann RC; Ferrero H; Shawber CJ; Kitajewski J; Simón C; Pellicer A; Gómez R
    Fertil Steril; 2013 Dec; 100(6):1768-76.e1. PubMed ID: 24074756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of endothelial cell behavior in sprouting angiogenesis.
    Eilken HM; Adams RH
    Curr Opin Cell Biol; 2010 Oct; 22(5):617-25. PubMed ID: 20817428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endothelial Semaphorin 3fb regulates Vegf pathway-mediated angiogenic sprouting.
    Watterston C; Halabi R; McFarlane S; Childs SJ
    PLoS Genet; 2021 Aug; 17(8):e1009769. PubMed ID: 34424892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MEF2 transcription factors are key regulators of sprouting angiogenesis.
    Sacilotto N; Chouliaras KM; Nikitenko LL; Lu YW; Fritzsche M; Wallace MD; Nornes S; García-Moreno F; Payne S; Bridges E; Liu K; Biggs D; Ratnayaka I; Herbert SP; Molnár Z; Harris AL; Davies B; Bond GL; Bou-Gharios G; Schwarz JJ; De Val S
    Genes Dev; 2016 Oct; 30(20):2297-2309. PubMed ID: 27898394
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ADAM10 and ADAM17 have opposite roles during sprouting angiogenesis.
    Caolo V; Swennen G; Chalaris A; Wagenaar A; Verbruggen S; Rose-John S; Molin DG; Vooijs M; Post MJ
    Angiogenesis; 2015 Jan; 18(1):13-22. PubMed ID: 25218057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ligand-dependent Notch signaling in vascular formation.
    Kume T
    Adv Exp Med Biol; 2012; 727():210-22. PubMed ID: 22399350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational modeling of angiogenesis: The importance of cell rearrangements during vascular growth.
    Stepanova D; Byrne HM; Maini PK; Alarcón T
    WIREs Mech Dis; 2024; 16(2):e1634. PubMed ID: 38084799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrin cytoplasmic domain-associated protein-1 attenuates sprouting angiogenesis.
    Brütsch R; Liebler SS; Wüstehube J; Bartol A; Herberich SE; Adam MG; Telzerow A; Augustin HG; Fischer A
    Circ Res; 2010 Sep; 107(5):592-601. PubMed ID: 20616313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation.
    Bentley K; Gerhardt H; Bates PA
    J Theor Biol; 2008 Jan; 250(1):25-36. PubMed ID: 18028963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of endothelial cell proliferation and migration rates in a computational model of sprouting angiogenesis.
    Norton KA; Popel AS
    Sci Rep; 2016 Nov; 6():36992. PubMed ID: 27841344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. "Sprouting angiogenesis", a reappraisal.
    Ribatti D; Crivellato E
    Dev Biol; 2012 Dec; 372(2):157-65. PubMed ID: 23031691
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational model of vascular endothelial growth factor spatial distribution in muscle and pro-angiogenic cell therapy.
    Mac Gabhann F; Ji JW; Popel AS
    PLoS Comput Biol; 2006 Sep; 2(9):e127. PubMed ID: 17002494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades.
    Moya IM; Umans L; Maas E; Pereira PN; Beets K; Francis A; Sents W; Robertson EJ; Mummery CL; Huylebroeck D; Zwijsen A
    Dev Cell; 2012 Mar; 22(3):501-14. PubMed ID: 22364862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Progress in understanding of the stalk and tip cells formation involvement in angiogenesis mechanisms.
    Zeng A; Wang SR; He YX; Yan Y; Zhang Y
    Tissue Cell; 2021 Dec; 73():101626. PubMed ID: 34479073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of Blood Vessel Formation by Notch Signaling.
    Tetzlaff F; Fischer A
    Adv Exp Med Biol; 2018; 1066():319-338. PubMed ID: 30030834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NOTCH regulation of the endothelial cell phenotype.
    Mack JJ; Iruela-Arispe ML
    Curr Opin Hematol; 2018 May; 25(3):212-218. PubMed ID: 29547401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Angiogenesis Revisited: An Overlooked Role of Endothelial Cell Metabolism in Vessel Sprouting.
    Vandekeere S; Dewerchin M; Carmeliet P
    Microcirculation; 2015 Oct; 22(7):509-17. PubMed ID: 26250801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.