These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 22406976)

  • 1. The effect of exchange interaction on quasiparticle Landau levels in narrow-gap quantum well heterostructures.
    Krishtopenko SS; Gavrilenko VI; Goiran M
    J Phys Condens Matter; 2012 Apr; 24(13):135601. PubMed ID: 22406976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of g-factor enhancement in narrow-gap quantum well heterostructures.
    Krishtopenko SS; Gavrilenko VI; Goiran M
    J Phys Condens Matter; 2011 Sep; 23(38):385601. PubMed ID: 21914930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exchange interaction effects in electron spin resonance: Larmor theorem violation in narrow-gap quantum well heterostructures.
    Krishtopenko SS; Gavrilenko VI; Goiran M
    J Phys Condens Matter; 2012 Jun; 24(25):252201. PubMed ID: 22635402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the effects of Landau level mixing on anisotropic transport in quantum Hall systems.
    Smith PM; Kennett MP
    J Phys Condens Matter; 2012 Feb; 24(5):055601. PubMed ID: 22227599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron spin resonance and cyclotron resonance for fractional quantum Hall states in narrow-gap QW heterostructures.
    Krishtopenko SS
    J Phys Condens Matter; 2013 Mar; 25(10):105601. PubMed ID: 23406894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetoplasmon excitations from integer-filled Landau levels in narrow-gap quantum wells.
    Krishtopenko SS
    J Phys Condens Matter; 2013 Sep; 25(36):365602. PubMed ID: 23924637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gap opening in the zeroth Landau level in gapped graphene: pseudo-Zeeman splitting in an angular magnetic field.
    Tahir M; Sabeeh K
    J Phys Condens Matter; 2012 Apr; 24(13):135005. PubMed ID: 22392807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport through graphene quantum dots.
    Güttinger J; Molitor F; Stampfer C; Schnez S; Jacobsen A; Dröscher S; Ihn T; Ensslin K
    Rep Prog Phys; 2012 Dec; 75(12):126502. PubMed ID: 23144122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A star-shaped heteronuclear Cr(III)Mn(II)3 species and its precise electronic and magnetic structure: spin frustration studied by X-ray spectroscopic, magnetic, and theoretical methods.
    Prinz M; Kuepper K; Taubitz C; Raekers M; Khanra S; Biswas B; Weyhermüller T; Uhlarz M; Wosnitza J; Schnack J; Postnikov AV; Schröder C; George SJ; Neumann M; Chaudhuri P
    Inorg Chem; 2010 Mar; 49(5):2093-102. PubMed ID: 20108916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast density matrix-based partitioning of the energy over the atoms in a molecule consistent with the Hirshfeld-I partitioning of the electron density.
    Vanfleteren D; Ghillemijn D; Van Neck D; Bultinck P; Waroquier M; Ayers PW
    J Comput Chem; 2011 Dec; 32(16):3485-96. PubMed ID: 21919019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magneto-transport properties of gapped graphene.
    Jiang L; Zheng Y; Li H; Shen H
    Nanotechnology; 2010 Apr; 21(14):145703. PubMed ID: 20220217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetization reversal process at atomic scale in systems with itinerant electrons.
    Uzdin VM; Vega A
    J Phys Condens Matter; 2012 May; 24(17):176002. PubMed ID: 22469970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooper instability of composite fermions.
    Scarola VW; Park K; Jain JK
    Nature; 2000 Aug; 406(6798):863-5. PubMed ID: 10972281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exact-exchange spin-density functional theory of Wigner localization and phase transitions in quantum rings.
    Arnold T; Siegmund M; Pankratov O
    J Phys Condens Matter; 2011 Aug; 23(33):335601. PubMed ID: 21811009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasiparticle states and quantum interference induced by magnetic impurities on a two-dimensional topological superconductor.
    Fu ZG; Zhang P; Wang Z; Li SS
    J Phys Condens Matter; 2012 Apr; 24(14):145502. PubMed ID: 22417885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct measurements of fractional quantum Hall effect gaps.
    Khrapai VS; Shashkin AA; Trokina MG; Dolgopolov VT; Pellegrini V; Beltram F; Biasiol G; Sorba L
    Phys Rev Lett; 2007 Aug; 99(8):086802. PubMed ID: 17930970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shake-up effect in photoluminescence of integer quantum Hall system formed in InGaAs/InP quantum wells.
    Pusep YA; Tito MA; LaPierre RR
    J Phys Condens Matter; 2016 May; 28(17):175602. PubMed ID: 27028359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large quantum rings in the ν > 1 quantum Hall regime.
    Räsänen E; Aichinger M
    J Phys Condens Matter; 2009 Jan; 21(2):025301. PubMed ID: 21813971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of hydrostatic pressure on the electron [Formula: see text] factor and g-factor anisotropy in GaAs-(Ga, Al)As quantum wells under magnetic fields.
    Porras-Montenegro N; Duque CA; Reyes-Gómez E; Oliveira LE
    J Phys Condens Matter; 2008 Nov; 20(46):465220. PubMed ID: 21693858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Andreev states of a superconducting quantum dot: mean field versus exact numerical results.
    Martín-Rodero A; Yeyati AL
    J Phys Condens Matter; 2012 Sep; 24(38):385303. PubMed ID: 22945559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.