BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22407006)

  • 1. Optimizing ion channel models using a parallel genetic algorithm on graphical processors.
    Ben-Shalom R; Aviv A; Razon B; Korngreen A
    J Neurosci Methods; 2012; 206(2):183-94. PubMed ID: 22407006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LASSIE: simulating large-scale models of biochemical systems on GPUs.
    Tangherloni A; Nobile MS; Besozzi D; Mauri G; Cazzaniga P
    BMC Bioinformatics; 2017 May; 18(1):246. PubMed ID: 28486952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fully parallel in time and space algorithm for simulating the electrical activity of a neural tissue.
    Bedez M; Belhachmi Z; Haeberlé O; Greget R; Moussaoui S; Bouteiller JM; Bischoff S
    J Neurosci Methods; 2016 Jan; 257():17-25. PubMed ID: 26424508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPU computing for systems biology.
    Dematté L; Prandi D
    Brief Bioinform; 2010 May; 11(3):323-33. PubMed ID: 20211843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of non-standard solvers for ODEs describing cellular reactions in the heart.
    Maclachlan MC; Sundnes J; Spiteri RJ
    Comput Methods Biomech Biomed Engin; 2007 Oct; 10(5):317-26. PubMed ID: 17852182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel parallel algorithm for large-scale Fock matrix construction with small locally distributed memory architectures: RT parallel algorithm.
    Takashima H; Yamada S; Obara S; Kitamura K; Inabata S; Miyakawa N; Tanabe K; Nagashima U
    J Comput Chem; 2002 Nov; 23(14):1337-46. PubMed ID: 12214316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance evaluation of image processing algorithms on the GPU.
    Castaño-Díez D; Moser D; Schoenegger A; Pruggnaller S; Frangakis AS
    J Struct Biol; 2008 Oct; 164(1):153-60. PubMed ID: 18692140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation and classification of ionic-channel signals.
    Moghaddamjoo A
    IEEE Trans Biomed Eng; 1991 Feb; 38(2):149-55. PubMed ID: 1712343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive processing techniques based on hidden Markov models for characterizing very small channel currents buried in noise and deterministic interferences.
    Chung SH; Krishnamurthy V; Moore JB
    Philos Trans R Soc Lond B Biol Sci; 1991 Dec; 334(1271):357-84. PubMed ID: 1723807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive collision detection for deformable models using streaming AABBs.
    Zhang X; Kim YJ
    IEEE Trans Vis Comput Graph; 2007; 13(2):318-29. PubMed ID: 17218748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast parallel Markov clustering in bioinformatics using massively parallel computing on GPU with CUDA and ELLPACK-R sparse format.
    Bustamam A; Burrage K; Hamilton NA
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(3):679-92. PubMed ID: 21483031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.
    Shen W; Wei D; Xu W; Zhu X; Yuan S
    Comput Methods Programs Biomed; 2010 Oct; 100(1):87-96. PubMed ID: 20674066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discerning ionic currents and their kinetics from input impedance data.
    Cox SJ; Ji L
    Bull Math Biol; 2001 Sep; 63(5):909-32. PubMed ID: 11565409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic simulation of chemically reacting systems using multi-core processors.
    Gillespie CS
    J Chem Phys; 2012 Jan; 136(1):014101. PubMed ID: 22239763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Taming the complexity of biological pathways through parallel computing.
    Ballarini P; Guido R; Mazza T; Prandi D
    Brief Bioinform; 2009 May; 10(3):278-88. PubMed ID: 19339382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Process Simulation of Complex Biological Pathways in Physical Reactive Space and Reformulated for Massively Parallel Computing Platforms.
    Ganesan N; Li J; Sharma V; Jiang H; Compagnoni A
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):365-79. PubMed ID: 27045833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facilitating arrhythmia simulation: the method of quantitative cellular automata modeling and parallel running.
    Zhu H; Sun Y; Rajagopal G; Mondry A; Dhar P
    Biomed Eng Online; 2004 Aug; 3():29. PubMed ID: 15339335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cuTauLeaping: a GPU-powered tau-leaping stochastic simulator for massive parallel analyses of biological systems.
    Nobile MS; Cazzaniga P; Besozzi D; Pescini D; Mauri G
    PLoS One; 2014; 9(3):e91963. PubMed ID: 24663957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Massively Parallel Signal Processing using the Graphics Processing Unit for Real-Time Brain-Computer Interface Feature Extraction.
    Wilson JA; Williams JC
    Front Neuroeng; 2009; 2():11. PubMed ID: 19636394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of 3D centimeter-scale continuum tumor growth at sub-millimeter resolution via distributed computing.
    Goodin DA; Frieboes HB
    Comput Biol Med; 2021 Jul; 134():104507. PubMed ID: 34157612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.