These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 22407497)
1. Genomic profiling by whole-genome single nucleotide polymorphism arrays in Wilms tumor and association with relapse. Perotti D; Spreafico F; Torri F; Gamba B; D'Adamo P; Pizzamiglio S; Terenziani M; Catania S; Collini P; Nantron M; Pession A; Bianchi M; Indolfi P; D'Angelo P; Fossati-Bellani F; Verderio P; Macciardi F; Radice P; Genes Chromosomes Cancer; 2012 Jul; 51(7):644-53. PubMed ID: 22407497 [TBL] [Abstract][Full Text] [Related]
2. Chromosomal anomalies at 1q, 3, 16q, and mutations of SIX1 and DROSHA genes underlie Wilms tumor recurrences. Spreafico F; Ciceri S; Gamba B; Torri F; Terenziani M; Collini P; Macciardi F; Radice P; Perotti D Oncotarget; 2016 Feb; 7(8):8908-15. PubMed ID: 26802027 [TBL] [Abstract][Full Text] [Related]
3. Genomic profiling maps loss of heterozygosity and defines the timing and stage dependence of epigenetic and genetic events in Wilms' tumors. Yuan E; Li CM; Yamashiro DJ; Kandel J; Thaker H; Murty VV; Tycko B Mol Cancer Res; 2005 Sep; 3(9):493-502. PubMed ID: 16179496 [TBL] [Abstract][Full Text] [Related]
4. Association of Chromosome 1q Gain With Inferior Survival in Favorable-Histology Wilms Tumor: A Report From the Children's Oncology Group. Gratias EJ; Dome JS; Jennings LJ; Chi YY; Tian J; Anderson J; Grundy P; Mullen EA; Geller JI; Fernandez CV; Perlman EJ J Clin Oncol; 2016 Sep; 34(26):3189-94. PubMed ID: 27400937 [TBL] [Abstract][Full Text] [Related]
6. High-resolution analysis of allelic imbalance in neuroblastoma cell lines by single nucleotide polymorphism arrays. Carr J; Bown NP; Case MC; Hall AG; Lunec J; Tweddle DA Cancer Genet Cytogenet; 2007 Jan; 172(2):127-38. PubMed ID: 17213021 [TBL] [Abstract][Full Text] [Related]
7. Molecular cytogenetic anomalies and phenotype alterations in a newly established cell line from Wilms tumor with diffuse anaplasia. Faussillon M; Murakami I; Bichat M; Telvi L; Jeanpierre C; Nezelof C; Jaubert F; Gogusev J Cancer Genet Cytogenet; 2008 Jul; 184(1):22-30. PubMed ID: 18558285 [TBL] [Abstract][Full Text] [Related]
8. Loss of heterozygosity analysis at different chromosome regions in Wilms tumor confirms 1p allelic loss as a marker of worse prognosis: a study from the Italian Association of Pediatric Hematology and Oncology. Spreafico F; Gamba B; Mariani L; Collini P; D'Angelo P; Pession A; Di Cataldo A; Indolfi P; Nantron M; Terenziani M; Morosi C; Radice P; Perotti D; J Urol; 2013 Jan; 189(1):260-6. PubMed ID: 23174227 [TBL] [Abstract][Full Text] [Related]
9. SNP-based arrays complement classic cytogenetics in the detection of chromosomal aberrations in Wilms' tumor. Zin R; Pham K; Ashleigh M; Ravine D; Waring P; Charles A Cancer Genet; 2012 Mar; 205(3):80-93. PubMed ID: 22469507 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide allelic state analysis on flow-sorted tumor fractions provides an accurate measure of chromosomal aberrations. Corver WE; Middeldorp A; ter Haar NT; Jordanova ES; van Puijenbroek M; van Eijk R; Cornelisse CJ; Fleuren GJ; Morreau H; Oosting J; van Wezel T Cancer Res; 2008 Dec; 68(24):10333-40. PubMed ID: 19074902 [TBL] [Abstract][Full Text] [Related]
11. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. Grundy PE; Breslow NE; Li S; Perlman E; Beckwith JB; Ritchey ML; Shamberger RC; Haase GM; D'Angio GJ; Donaldson M; Coppes MJ; Malogolowkin M; Shearer P; Thomas PR; Macklis R; Tomlinson G; Huff V; Green DM; J Clin Oncol; 2005 Oct; 23(29):7312-21. PubMed ID: 16129848 [TBL] [Abstract][Full Text] [Related]
12. Gain of 1q is a marker of poor prognosis in Wilms' tumors. Segers H; van den Heuvel-Eibrink MM; Williams RD; van Tinteren H; Vujanic G; Pieters R; Pritchard-Jones K; Bown N; Genes Chromosomes Cancer; 2013 Nov; 52(11):1065-74. PubMed ID: 24038759 [TBL] [Abstract][Full Text] [Related]
13. A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide gene dosage effect. Agnelli L; Mosca L; Fabris S; Lionetti M; Andronache A; Kwee I; Todoerti K; Verdelli D; Battaglia C; Bertoni F; Deliliers GL; Neri A Genes Chromosomes Cancer; 2009 Jul; 48(7):603-14. PubMed ID: 19396863 [TBL] [Abstract][Full Text] [Related]
14. High-resolution genomic screening in mantle cell lymphoma--specific changes correlate with genomic complexity, the proliferation signature and survival. Halldórsdóttir AM; Sander B; Göransson H; Isaksson A; Kimby E; Mansouri M; Rosenquist R; Ehrencrona H Genes Chromosomes Cancer; 2011 Feb; 50(2):113-21. PubMed ID: 21117067 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with changes in transcriptional profiles. Mosca L; Musto P; Todoerti K; Barbieri M; Agnelli L; Fabris S; Tuana G; Lionetti M; Bonaparte E; Sirchia SM; Grieco V; Bianchino G; D'Auria F; Statuto T; Mazzoccoli C; De Luca L; Petrucci MT; Morabito F; Offidani M; Di Raimondo F; Falcone A; Caravita T; Omedè P; Boccadoro M; Palumbo A; Neri A Am J Hematol; 2013 Jan; 88(1):16-23. PubMed ID: 23044976 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide SNP genotyping study using pooled DNA to identify candidate markers mediating susceptibility to end-stage renal disease attributed to Type 1 diabetes. Craig DW; Millis MP; DiStefano JK Diabet Med; 2009 Nov; 26(11):1090-8. PubMed ID: 19929986 [TBL] [Abstract][Full Text] [Related]
17. Identification of four distinct regions of allelic imbalances on chromosome 1 by the combined comparative genomic hybridization and microsatellite analysis on hepatocellular carcinoma. Leung TH; Wong N; Lai PB; Chan A; To KF; Liew CT; Lau WY; Johnson PJ Mod Pathol; 2002 Nov; 15(11):1213-20. PubMed ID: 12429801 [TBL] [Abstract][Full Text] [Related]