These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

535 related articles for article (PubMed ID: 22407612)

  • 1. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling.
    Lohse MJ; Nuber S; Hoffmann C
    Pharmacol Rev; 2012 Apr; 64(2):299-336. PubMed ID: 22407612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors.
    Lohse MJ; Nikolaev VO; Hein P; Hoffmann C; Vilardaga JP; Bünemann M
    Trends Pharmacol Sci; 2008 Mar; 29(3):159-65. PubMed ID: 18262662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting and imaging protein-protein interactions during G protein-mediated signal transduction in vivo and in situ by using fluorescence-based techniques.
    Hébert TE; Galés C; Rebois RV
    Cell Biochem Biophys; 2006; 45(1):85-109. PubMed ID: 16679566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic analysis of G protein-coupled receptor signaling using fluorescence resonance energy transfer in living cells.
    Lohse MJ; Hoffmann C; Nikolaev VO; Vilardaga JP; Bünemann M
    Adv Protein Chem; 2007; 74():167-88. PubMed ID: 17854658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of bioluminescence- and fluorescence resonance energy transfer to drug discovery at G protein-coupled receptors.
    Milligan G
    Eur J Pharm Sci; 2004 Mar; 21(4):397-405. PubMed ID: 14998570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Greatly enhanced detection of a volatile ligand at femtomolar levels using bioluminescence resonance energy transfer (BRET).
    Dacres H; Wang J; Leitch V; Horne I; Anderson AR; Trowell SC
    Biosens Bioelectron; 2011 Nov; 29(1):119-24. PubMed ID: 21873043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using BRET to detect ligand-specific conformational changes in preformed signalling complexes.
    Audet N; Piñeyro G
    Methods Mol Biol; 2011; 756():149-63. PubMed ID: 21870224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light resonance energy transfer-based methods in the study of G protein-coupled receptor oligomerization.
    Gandía J; Lluís C; Ferré S; Franco R; Ciruela F
    Bioessays; 2008 Jan; 30(1):82-9. PubMed ID: 18081019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time monitoring of receptor and G-protein interactions in living cells.
    Galés C; Rebois RV; Hogue M; Trieu P; Breit A; Hébert TE; Bouvier M
    Nat Methods; 2005 Mar; 2(3):177-84. PubMed ID: 15782186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using quantitative BRET to assess G protein-coupled receptor homo- and heterodimerization.
    Achour L; Kamal M; Jockers R; Marullo S
    Methods Mol Biol; 2011; 756():183-200. PubMed ID: 21870226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioluminescence Resonance Energy Transfer Approaches to Discover Bias in GPCR Signaling.
    Johnstone EK; Pfleger KD
    Methods Mol Biol; 2015; 1335():191-204. PubMed ID: 26260602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring receptor signaling by intramolecular FRET.
    Lohse MJ; Bünemann M; Hoffmann C; Vilardaga JP; Nikolaev VO
    Curr Opin Pharmacol; 2007 Oct; 7(5):547-53. PubMed ID: 17919975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of GPCR dimerization using acceptor photobleaching resonance energy transfer techniques.
    Busnelli M; Mauri M; Parenti M; Chini B
    Methods Enzymol; 2013; 521():311-27. PubMed ID: 23351747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of G-protein-coupled receptor-protein interactions by bioluminescence resonance energy transfer.
    Kroeger KM; Eidne KA
    Methods Mol Biol; 2004; 259():323-33. PubMed ID: 15250502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral allosterism in the glucagon receptor family: glucagon-like peptide 1 induces G-protein-coupled receptor heteromer formation.
    Schelshorn D; Joly F; Mutel S; Hampe C; Breton B; Mutel V; Lütjens R
    Mol Pharmacol; 2012 Mar; 81(3):309-18. PubMed ID: 22108912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer.
    James JR; Oliveira MI; Carmo AM; Iaboni A; Davis SJ
    Nat Methods; 2006 Dec; 3(12):1001-6. PubMed ID: 17086179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of heterotrimeric G-protein and regulators of G-protein signaling interactions by time-resolved fluorescence resonance energy transfer.
    Leifert WR; Bailey K; Cooper TH; Aloia AL; Glatz RV; McMurchie EJ
    Anal Biochem; 2006 Aug; 355(2):201-12. PubMed ID: 16729956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence resonance energy transfer to study receptor dimerization in living cells.
    Bader JE; Beck-Sickinger AG
    Methods Mol Biol; 2004; 259():335-52. PubMed ID: 15250503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in bioluminescence resonance energy transfer technologies to study GPCR heteromerization.
    Ayoub MA; Pfleger KD
    Curr Opin Pharmacol; 2010 Feb; 10(1):44-52. PubMed ID: 19897419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of G-protein-coupled receptor signals in intact cells.
    Lohse MJ; Hein P; Hoffmann C; Nikolaev VO; Vilardaga JP; Bünemann M
    Br J Pharmacol; 2008 Mar; 153 Suppl 1(Suppl 1):S125-32. PubMed ID: 18193071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.