These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22407685)

  • 41. A Flavoprotein Dioxygenase Steers Bacterial Tropone Biosynthesis via Coenzyme A-Ester Oxygenolysis and Ring Epoxidation.
    Duan Y; Toplak M; Hou A; Brock NL; Dickschat JS; Teufel R
    J Am Chem Soc; 2021 Jul; 143(27):10413-10421. PubMed ID: 34196542
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular cloning and expression in different microbes of the DNA encoding Pseudomonas putida U phenylacetyl-CoA ligase. Use of this gene to improve the rate of benzylpenicillin biosynthesis in Penicillium chrysogenum.
    Miñambres B; Martínez-Blanco H; Olivera ER; García B; Díez B; Barredo JL; Moreno MA; Schleissner C; Salto F; Luengo JM
    J Biol Chem; 1996 Dec; 271(52):33531-8. PubMed ID: 8969218
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase.
    Lamas-Maceiras M; Vaca I; Rodríguez E; Casqueiro J; Martín JF
    Biochem J; 2006 Apr; 395(1):147-55. PubMed ID: 16321143
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Anaerobic degradation of aromatic amino acids by the hyperthermophilic archaeon Ferroglobus placidus.
    Aklujkar M; Risso C; Smith J; Beaulieu D; Dubay R; Giloteaux L; DiBurro K; Holmes D
    Microbiology (Reading); 2014 Dec; 160(Pt 12):2694-2709. PubMed ID: 25269449
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Indolepyruvate ferredoxin oxidoreductase from Pyrococcus sp. KOD1 possesses a mosaic structure showing features of various oxidoreductases.
    Siddiqui MA; Fujiwara S; Imanaka T
    Mol Gen Genet; 1997 Apr; 254(4):433-9. PubMed ID: 9180697
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phenylacetate catabolism in Rhodococcus sp. strain RHA1: a central pathway for degradation of aromatic compounds.
    Navarro-Llorens JM; Patrauchan MA; Stewart GR; Davies JE; Eltis LD; Mohn WW
    J Bacteriol; 2005 Jul; 187(13):4497-504. PubMed ID: 15968060
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isolation of TDA-producing Phaeobacter strains from sea bass larval rearing units and their probiotic effect against pathogenic Vibrio spp. in Artemia cultures.
    Grotkjær T; Bentzon-Tilia M; D'Alvise P; Dourala N; Nielsen KF; Gram L
    Syst Appl Microbiol; 2016 May; 39(3):180-188. PubMed ID: 26922490
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Purification and characterization of phenylacetate-coenzyme A ligase from a denitrifying Pseudomonas sp., an enzyme involved in the anaerobic degradation of phenylacetate.
    Mohamed M el-S ; Fuchs G
    Arch Microbiol; 1993; 159(6):554-62. PubMed ID: 8352645
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phaeobacter gallaeciensis reduces Vibrio anguillarum in cultures of microalgae and rotifers, and prevents vibriosis in cod larvae.
    D'Alvise PW; Lillebø S; Prol-Garcia MJ; Wergeland HI; Nielsen KF; Bergh Ø; Gram L
    PLoS One; 2012; 7(8):e43996. PubMed ID: 22928051
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera.
    Martens T; Heidorn T; Pukall R; Simon M; Tindall BJ; Brinkhoff T
    Int J Syst Evol Microbiol; 2006 Jun; 56(Pt 6):1293-1304. PubMed ID: 16738106
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simultaneous involvement of a tungsten-containing aldehyde:ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism.
    Debnar-Daumler C; Seubert A; Schmitt G; Heider J
    J Bacteriol; 2014 Jan; 196(2):483-92. PubMed ID: 24214948
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dual function of tropodithietic acid as antibiotic and signaling molecule in global gene regulation of the probiotic bacterium Phaeobacter inhibens.
    Beyersmann PG; Tomasch J; Son K; Stocker R; Göker M; Wagner-Döbler I; Simon M; Brinkhoff T
    Sci Rep; 2017 Apr; 7(1):730. PubMed ID: 28389641
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Insights on the regulation of the phenylacetate degradation pathway from Escherichia coli.
    Fernández C; Díaz E; García JL
    Environ Microbiol Rep; 2014 Jun; 6(3):239-50. PubMed ID: 24983528
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aerobic catabolism of phenylacetic acid in Pseudomonas putida U: biochemical characterization of a specific phenylacetic acid transport system and formal demonstration that phenylacetyl-coenzyme A is a catabolic intermediate.
    Schleissner C; Olivera ER; Fernández-Valverde M; Luengo JM
    J Bacteriol; 1994 Dec; 176(24):7667-76. PubMed ID: 8002592
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Resistance and tolerance to tropodithietic acid, an antimicrobial in aquaculture, is hard to select.
    Porsby CH; Webber MA; Nielsen KF; Piddock LJ; Gram L
    Antimicrob Agents Chemother; 2011 Apr; 55(4):1332-7. PubMed ID: 21263047
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biofilm formation and antibiotic production in Ruegeria mobilis are influenced by intracellular concentrations of cyclic dimeric guanosinmonophosphate.
    D'Alvise PW; Magdenoska O; Melchiorsen J; Nielsen KF; Gram L
    Environ Microbiol; 2014 May; 16(5):1252-66. PubMed ID: 24118907
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular and phenotypic analyses reveal the non-identity of the Phaeobacter gallaeciensis type strain deposits CIP 105210T and DSM 17395.
    Buddruhs N; Pradella S; Göker M; Päuker O; Pukall R; Spröer C; Schumann P; Petersen J; Brinkhoff T
    Int J Syst Evol Microbiol; 2013 Nov; 63(Pt 11):4340-4349. PubMed ID: 24187021
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anaerobic oxidation of phenylacetate and 4-hydroxyphenylacetate to benzoyl-coenzyme A and CO2 in denitrifying Pseudomonas sp. Evidence for an alpha-oxidation mechanism.
    Mohamed M el-S ; Seyfried B; Tschech A; Fuchs G
    Arch Microbiol; 1993; 159(6):563-73. PubMed ID: 8352646
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phenylacetyl-coenzyme A is the true inducer of the phenylacetic acid catabolism pathway in Pseudomonas putida U.
    García B; Olivera ER; Miñambres B; Carnicero D; Muñiz C; Naharro G; Luengo JM
    Appl Environ Microbiol; 2000 Oct; 66(10):4575-8. PubMed ID: 11010921
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterisation of the l-Cystine β-Lyase PatB from Phaeobacter inhibens: An Enzyme Involved in the Biosynthesis of the Marine Antibiotic Tropodithietic Acid.
    Dickschat JS; Rinkel J; Klapschinski T; Petersen J
    Chembiochem; 2017 Nov; 18(22):2260-2267. PubMed ID: 28895253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.