These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22407751)

  • 1. Engineering the atomic structure of carbon nanotubes by a focused electron beam: new morphologies at the sub-nanometer scale.
    Rodríguez-Manzo JA; Krasheninnikov AV; Banhart F
    Chemphyschem; 2012 Jul; 13(10):2596-600. PubMed ID: 22407751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of single-walled carbon nanotubes from sharp metal tips.
    Rodríguez-Manzo JA; Janowska I; Pham-Huu C; Tolvanen A; Krasheninnikov AV; Nordlund K; Banhart F
    Small; 2009 Dec; 5(23):2710-5. PubMed ID: 19743432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trapping of metal atoms in vacancies of carbon nanotubes and graphene.
    Rodríguez-Manzo JA; Cretu O; Banhart F
    ACS Nano; 2010 Jun; 4(6):3422-8. PubMed ID: 20499848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of electron beam irradiation on WS2 nanotubes.
    Ding K; Feng Y; Huang S; Li B; Wang Y; Liu H; Qian G
    Nanotechnology; 2012 Oct; 23(41):415703. PubMed ID: 23018790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Registry-induced electronic superstructure in double-walled carbon nanotubes, associated with the interaction between two graphene-like monolayers.
    Tison Y; Giusca CE; Sloan J; Silva SR
    ACS Nano; 2008 Oct; 2(10):2113-20. PubMed ID: 19206458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-walled carbon nanotubes under focused electron beam: metal passivation effect and nanoscaled curvature effect.
    Khan I; He B; Huang S; Wu C
    J Phys Condens Matter; 2018 Sep; 30(38):385302. PubMed ID: 30095438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The formation and utility of sub-angstrom to nanometer-sized electron probes in the aberration-corrected transmission electron microscope at the University of Illinois.
    Wen J; Mabon J; Lei C; Burdin S; Sammann E; Petrov I; Shah AB; Chobpattana V; Zhang J; Ran K; Zuo JM; Mishina S; Aoki T
    Microsc Microanal; 2010 Apr; 16(2):183-93. PubMed ID: 20187990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reinforcement of single-walled carbon nanotube bundles by intertube bridging.
    Kis A; Csányi G; Salvetat JP; Lee TN; Couteau E; Kulik AJ; Benoit W; Brugger J; Forró L
    Nat Mater; 2004 Mar; 3(3):153-7. PubMed ID: 14991016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt nanoparticle-assisted engineering of multiwall carbon nanotubes.
    Wang MS; Bando Y; Rodriguez-Manzo JA; Banhart F; Golberg D
    ACS Nano; 2009 Sep; 3(9):2632-8. PubMed ID: 19678671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defect-driven room-temperature coalescence of double-walled carbon nanotubes.
    Nie A; Wang P; Wang H; Mao SX
    Nanotechnology; 2010 Jun; 21(24):245302. PubMed ID: 20484795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-synthesis carbon doping of individual multiwalled boron nitride nanotubes via electron-beam irradiation.
    Wei X; Wang MS; Bando Y; Golberg D
    J Am Chem Soc; 2010 Oct; 132(39):13592-3. PubMed ID: 20836492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high temperatures.
    Huang JY; Chen S; Ren ZF; Wang Z; Kempa K; Naughton MJ; Chen G; Dresselhaus MS
    Phys Rev Lett; 2007 May; 98(18):185501. PubMed ID: 17501582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular junctions by joining single-walled carbon nanotubes.
    Terrones M; Banhart F; Grobert N; Charlier JC; Terrones H; Ajayan PM
    Phys Rev Lett; 2002 Aug; 89(7):075505. PubMed ID: 12190529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron irradiation-induced destruction of carbon nanotubes in electron microscopes.
    Mølhave K; Gudnason SB; Pedersen AT; Clausen CH; Horsewell A; Bøggild P
    Ultramicroscopy; 2007 Dec; 108(1):52-7. PubMed ID: 17445986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the diameter-dependent stability of single-walled carbon nanotubes.
    Warner JH; Schäffel F; Zhong G; Rümmeli MH; Büchner B; Robertson J; Briggs GA
    ACS Nano; 2009 Jun; 3(6):1557-63. PubMed ID: 19462964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the chiral indices (n,m) of carbon nanotubes by electron diffraction.
    Qin LC
    Phys Chem Chem Phys; 2007 Jan; 9(1):31-48. PubMed ID: 17164886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise control of the number of walls formed during carbon nanotube growth using chemical vapor deposition.
    Yang HS; Zhang L; Dong XH; Zhu WM; Zhu J; Nelson BJ; Zhang XB
    Nanotechnology; 2012 Feb; 23(6):065604. PubMed ID: 22248487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examining the stability of folded graphene edges against electron beam induced sputtering with atomic resolution.
    Warner JH; Rümmeli MH; Bachmatiuk A; Büchner B
    Nanotechnology; 2010 Aug; 21(32):325702. PubMed ID: 20639589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled double ladder structure formed inside carbon nanotubes by encapsulation of H8Si8O12.
    Liu Z; Joung SK; Okazaki T; Suenaga K; Hagiwara Y; Ohsuna T; Kuroda K; Iijima S
    ACS Nano; 2009 May; 3(5):1160-6. PubMed ID: 19408925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.