These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22407902)

  • 1. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM.
    Liu Q; Sun J; Lv H; Long S; Yin K; Wan N; Li Y; Sun L; Liu M
    Adv Mater; 2012 Apr; 24(14):1844-9. PubMed ID: 22407902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte- based ReRAM.
    Valov I; Waser R
    Adv Mater; 2013 Jan; 25(2):162-4. PubMed ID: 23086899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response to "comment on real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM".
    Liu Q; Jun S; Lv H; Long S; Li L; Yin K; Wan N; Li Y; Sun L; Liu M
    Adv Mater; 2013 Jan; 25(2):165-7. PubMed ID: 23086910
    [No Abstract]   [Full Text] [Related]  

  • 4. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode.
    Liu Q; Long S; Lv H; Wang W; Niu J; Huo Z; Chen J; Liu M
    ACS Nano; 2010 Oct; 4(10):6162-8. PubMed ID: 20853865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved bipolar resistive switching memory characteristics in Ge0.5Se0.5 solid electrolyte by using dispersed silver nanocrystals on bottom electrode.
    Kim JH; Nam KH; Hwang I; Cho WJ; Park B; Chung HB
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9498-503. PubMed ID: 25971090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanofilament Formation and Regeneration During Cu/Al₂O₃ Resistive Memory Switching.
    Hubbard WA; Kerelsky A; Jasmin G; White ER; Lodico J; Mecklenburg M; Regan BC
    Nano Lett; 2015 Jun; 15(6):3983-7. PubMed ID: 25927328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electro-Forming and Electro-Breaking of Nanoscale Ag Filaments for Conductive-Bridging Random-Access Memory Cell using Ag-Doped Polymer-Electrolyte between Pt Electrodes.
    Song MJ; Kwon KH; Park JG
    Sci Rep; 2017 Jun; 7(1):3065. PubMed ID: 28596546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of conductance quantization in oxide-based resistive switching memory.
    Zhu X; Su W; Liu Y; Hu B; Pan L; Lu W; Zhang J; Li RW
    Adv Mater; 2012 Aug; 24(29):3941-6. PubMed ID: 22707001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anodic Behavior of the Aluminum Current Collector in Imide-Based Electrolytes: Influence of Solvent, Operating Temperature, and Native Oxide-Layer Thickness.
    Meister P; Qi X; Kloepsch R; Krämer E; Streipert B; Winter M; Placke T
    ChemSusChem; 2017 Feb; 10(4):804-814. PubMed ID: 28127874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling.
    Yasuda K; Taniguchi A; Akita T; Ioroi T; Siroma Z
    Phys Chem Chem Phys; 2006 Feb; 8(6):746-52. PubMed ID: 16482315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrode-electrolyte interface properties in implantation conditions.
    Riistama J; Lekkala J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6021-4. PubMed ID: 17946736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ observation of voltage-induced multilevel resistive switching in solid electrolyte memory.
    Choi SJ; Park GS; Kim KH; Cho S; Yang WY; Li XS; Moon JH; Lee KJ; Kim K
    Adv Mater; 2011 Aug; 23(29):3272-7. PubMed ID: 21671452
    [No Abstract]   [Full Text] [Related]  

  • 13. Making the hydrogen evolution reaction in polymer electrolyte membrane electrolysers even faster.
    Tymoczko J; Calle-Vallejo F; Schuhmann W; Bandarenka AS
    Nat Commun; 2016 Mar; 7():10990. PubMed ID: 26960565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical Role of pH Evolution of Electrolyte in the Reaction Mechanism for Rechargeable Zinc Batteries.
    Lee B; Seo HR; Lee HR; Yoon CS; Kim JH; Chung KY; Cho BW; Oh SH
    ChemSusChem; 2016 Oct; 9(20):2948-2956. PubMed ID: 27650037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resistive switching memory based on bioinspired natural solid polymer electrolytes.
    Raeis Hosseini N; Lee JS
    ACS Nano; 2015 Jan; 9(1):419-26. PubMed ID: 25513838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Mn
    Zhang C; Duan N; Jiang L; Xu F; Luo J
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11958-11969. PubMed ID: 29450773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic evolution of conducting nanofilament in resistive switching memories.
    Chen JY; Hsin CL; Huang CW; Chiu CH; Huang YT; Lin SJ; Wu WW; Chen LJ
    Nano Lett; 2013 Aug; 13(8):3671-7. PubMed ID: 23855543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemically prepared oxides for resistive switching memories.
    Zaffora A; Di Quarto F; Habazaki H; Valov I; Santamaria M
    Faraday Discuss; 2019 Feb; 213(0):165-181. PubMed ID: 30357186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoionic transport and electrochemical reactions in resistively switching silicon dioxide.
    Tappertzhofen S; Mündelein H; Valov I; Waser R
    Nanoscale; 2012 May; 4(10):3040-3. PubMed ID: 22504836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The synthesis of Pt/Ag bimetallic nanoparticles using a successive solution plasma process.
    Kim SM; Lee SY; Lee MH; Kim JW
    J Nanosci Nanotechnol; 2014 Dec; 14(12):8925-9. PubMed ID: 25970983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.