These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22408023)

  • 1. Theoretical comparison of wall-derived and erythrocyte-derived mechanisms for metabolic flow regulation in heterogeneous microvascular networks.
    Roy TK; Pries AR; Secomb TW
    Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H1945-52. PubMed ID: 22408023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical model of metabolic blood flow regulation: roles of ATP release by red blood cells and conducted responses.
    Arciero JC; Carlson BE; Secomb TW
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1562-71. PubMed ID: 18689501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural adaptation of microvascular networks: functional roles of adaptive responses.
    Pries AR; Reglin B; Secomb TW
    Am J Physiol Heart Circ Physiol; 2001 Sep; 281(3):H1015-25. PubMed ID: 11514266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary recruitment in a theoretical model for blood flow regulation in heterogeneous microvessel networks.
    Fry BC; Roy TK; Secomb TW
    Physiol Rep; 2013 Aug; 1(3):e00050. PubMed ID: 24040516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct roles of red-blood-cell-derived and wall-derived mechanisms in metabolic regulation of blood flow.
    Fry BC; Secomb TW
    Microcirculation; 2021 Jul; 28(5):e12690. PubMed ID: 33650127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural adaptation of microvessel diameters in response to metabolic stimuli: where are the oxygen sensors?
    Reglin B; Secomb TW; Pries AR
    Am J Physiol Heart Circ Physiol; 2009 Dec; 297(6):H2206-19. PubMed ID: 19783778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural response of microcirculatory networks to changes in demand: information transfer by shear stress.
    Pries AR; Reglin B; Secomb TW
    Am J Physiol Heart Circ Physiol; 2003 Jun; 284(6):H2204-12. PubMed ID: 12573998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli.
    Pries AR; Reglin B; Secomb TW
    Hypertension; 2005 Oct; 46(4):725-31. PubMed ID: 16172421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational study of red blood cell deformability effect on hemodynamic alteration in capillary vessel networks.
    Ebrahimi S; Bagchi P
    Sci Rep; 2022 Mar; 12(1):4304. PubMed ID: 35277592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T
    J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional distribution of wall shear stress and its gradient in red cell-resolved computational modeling of blood flow in in vivo-like microvascular networks.
    Balogh P; Bagchi P
    Physiol Rep; 2019 May; 7(9):e14067. PubMed ID: 31062494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A quantitative observation of erythrocyte flow dynamics in microvessels of isolated rabbit mesentery].
    Soutani M
    Nihon Seirigaku Zasshi; 1994; 56(6):181-95. PubMed ID: 8078034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: cell-free layer and flow resistance.
    Tateishi N; Suzuki Y; Soutani M; Maeda N
    J Biomech; 1994 Sep; 27(9):1119-25. PubMed ID: 7929461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses.
    Carlson BE; Arciero JC; Secomb TW
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1572-9. PubMed ID: 18723769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid discrete-continuum approach for modelling microcirculatory blood flow.
    Shipley RJ; Smith AF; Sweeney PW; Pries AR; Secomb TW
    Math Med Biol; 2020 Feb; 37(1):40-57. PubMed ID: 30892609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood flow regulation and oxygen transport in a heterogeneous model of the mouse retina.
    Fry BC; Harris A; Siesky B; Arciero J
    Math Biosci; 2020 Nov; 329():108476. PubMed ID: 32920096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microvascular adaptation--regulation, coordination and function.
    Pries AR; Secomb TW
    Z Kardiol; 2000; 89 Suppl 9():IX/117-20. PubMed ID: 11151780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous oscillations in a model for active control of microvessel diameters.
    Arciero JC; Secomb TW
    Math Med Biol; 2012 Jun; 29(2):163-80. PubMed ID: 21525236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.