These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
563 related articles for article (PubMed ID: 22408077)
1. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Shivaprasad PV; Chen HM; Patel K; Bond DM; Santos BA; Baulcombe DC Plant Cell; 2012 Mar; 24(3):859-74. PubMed ID: 22408077 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection. Yang L; Mu X; Liu C; Cai J; Shi K; Zhu W; Yang Q J Integr Plant Biol; 2015 Dec; 57(12):1078-88. PubMed ID: 25735453 [TBL] [Abstract][Full Text] [Related]
3. Expression profiling across wild and cultivated tomatoes supports the relevance of early miR482/2118 suppression for de Vries S; Kukuk A; von Dahlen JK; Schnake A; Kloesges T; Rose LE Proc Biol Sci; 2018 Feb; 285(1873):. PubMed ID: 29491170 [TBL] [Abstract][Full Text] [Related]
4. Extensive Families of miRNAs and PHAS Loci in Norway Spruce Demonstrate the Origins of Complex phasiRNA Networks in Seed Plants. Xia R; Xu J; Arikit S; Meyers BC Mol Biol Evol; 2015 Nov; 32(11):2905-18. PubMed ID: 26318183 [TBL] [Abstract][Full Text] [Related]
5. Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. Canto-Pastor A; Santos BAMC; Valli AA; Summers W; Schornack S; Baulcombe DC Proc Natl Acad Sci U S A; 2019 Feb; 116(7):2755-2760. PubMed ID: 30679269 [TBL] [Abstract][Full Text] [Related]
6. miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. Zhu QH; Fan L; Liu Y; Xu H; Llewellyn D; Wilson I PLoS One; 2013; 8(12):e84390. PubMed ID: 24391949 [TBL] [Abstract][Full Text] [Related]
7. The microRNA miR482 regulates NBS-LRR genes in response to ALT1 infection in apple. Liu F; Tang J; Li T; Zhang Q Plant Sci; 2024 Jun; 343():112078. PubMed ID: 38556113 [TBL] [Abstract][Full Text] [Related]
8. A Tomato Nucleotide Binding Sites-Leucine-Rich Repeat Gene Is Positively Involved in Plant Resistance to Phytophthora infestans. Jiang N; Cui J; Meng J; Luan Y Phytopathology; 2018 Aug; 108(8):980-987. PubMed ID: 29595084 [TBL] [Abstract][Full Text] [Related]
9. The role of microRNAs in NBS-LRR gene expression and its implications for plant immunity and crop development. Rodrigues JCM; Carrijo J; Anjos RM; Cunha NB; Grynberg P; Aragão FJL; Vianna GR Transgenic Res; 2024 Aug; 33(4):159-174. PubMed ID: 38856866 [TBL] [Abstract][Full Text] [Related]
10. Random mutagenesis of the nucleotide-binding domain of NRC1 (NB-LRR Required for Hypersensitive Response-Associated Cell Death-1), a downstream signalling nucleotide-binding, leucine-rich repeat (NB-LRR) protein, identifies gain-of-function mutations in the nucleotide-binding pocket. Sueldo DJ; Shimels M; Spiridon LN; Caldararu O; Petrescu AJ; Joosten MH; Tameling WI New Phytol; 2015 Oct; 208(1):210-23. PubMed ID: 26009937 [TBL] [Abstract][Full Text] [Related]
11. Expression and processing of polycistronic artificial microRNAs and trans-acting siRNAs from transiently introduced transgenes in Solanum lycopersicum and Nicotiana benthamiana. Lunardon A; Kariuki SM; Axtell MJ Plant J; 2021 May; 106(4):1087-1104. PubMed ID: 33655542 [TBL] [Abstract][Full Text] [Related]
12. Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and arabidopsis. Pan Q; Liu YS; Budai-Hadrian O; Sela M; Carmel-Goren L; Zamir D; Fluhr R Genetics; 2000 May; 155(1):309-22. PubMed ID: 10790405 [TBL] [Abstract][Full Text] [Related]
13. The Sm gene conferring resistance to gray leaf spot disease encodes an NBS-LRR (nucleotide-binding site-leucine-rich repeat) plant resistance protein in tomato. Yang H; Wang H; Jiang J; Liu M; Liu Z; Tan Y; Zhao T; Zhang H; Chen X; Li J; Wang A; Du M; Xu X Theor Appl Genet; 2022 May; 135(5):1467-1476. PubMed ID: 35165745 [TBL] [Abstract][Full Text] [Related]
14. The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants. Postma WJ; Slootweg EJ; Rehman S; Finkers-Tomczak A; Tytgat TO; van Gelderen K; Lozano-Torres JL; Roosien J; Pomp R; van Schaik C; Bakker J; Goverse A; Smant G Plant Physiol; 2012 Oct; 160(2):944-54. PubMed ID: 22904163 [TBL] [Abstract][Full Text] [Related]
15. The tomato I gene for Fusarium wilt resistance encodes an atypical leucine-rich repeat receptor-like protein whose function is nevertheless dependent on SOBIR1 and SERK3/BAK1. Catanzariti AM; Do HT; Bru P; de Sain M; Thatcher LF; Rep M; Jones DA Plant J; 2017 Mar; 89(6):1195-1209. PubMed ID: 27995670 [TBL] [Abstract][Full Text] [Related]
16. A microRNA cascade in plant defense. Eckardt NA Plant Cell; 2012 Mar; 24(3):840. PubMed ID: 22427338 [No Abstract] [Full Text] [Related]
17. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. Liu J; Cheng X; Liu D; Xu W; Wise R; Shen QH PLoS Genet; 2014 Dec; 10(12):e1004755. PubMed ID: 25502438 [TBL] [Abstract][Full Text] [Related]
18. MicroRNA482/2118, a miRNA superfamily essential for both disease resistance and plant development. Zhang Y; Waseem M; Zeng Z; Xu J; Chen C; Liu Y; Zhai J; Xia R New Phytol; 2022 Mar; 233(5):2047-2057. PubMed ID: 34761409 [TBL] [Abstract][Full Text] [Related]
19. Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Bai J; Pennill LA; Ning J; Lee SW; Ramalingam J; Webb CA; Zhao B; Sun Q; Nelson JC; Leach JE; Hulbert SH Genome Res; 2002 Dec; 12(12):1871-84. PubMed ID: 12466291 [TBL] [Abstract][Full Text] [Related]