BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 22408159)

  • 1. Functional characterization of UDP-glucose:undecaprenyl-phosphate glucose-1-phosphate transferases of Escherichia coli and Caulobacter crescentus.
    Patel KB; Toh E; Fernandez XB; Hanuszkiewicz A; Hardy GG; Brun YV; Bernards MA; Valvano MA
    J Bacteriol; 2012 May; 194(10):2646-57. PubMed ID: 22408159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct functional domains of the Salmonella enterica WbaP transferase that is involved in the initiation reaction for synthesis of the O antigen subunit.
    Saldías MS; Patel K; Marolda CL; Bittner M; Contreras I; Valvano MA
    Microbiology (Reading); 2008 Feb; 154(Pt 2):440-453. PubMed ID: 18227248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in Sugar-Nucleotide Synthesis Genes Restore Holdfast Polysaccharide Anchoring to Caulobacter crescentus Holdfast Anchor Mutants.
    Hardy GG; Toh E; Berne C; Brun YV
    J Bacteriol; 2018 Feb; 200(3):. PubMed ID: 29158242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the Caulobacter crescentus holdfast polysaccharide biosynthesis pathway reveals significant redundancy in the initiating glycosyltransferase and polymerase steps.
    Toh E; Kurtz HD; Brun YV
    J Bacteriol; 2008 Nov; 190(21):7219-31. PubMed ID: 18757530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological analysis of the Escherichia coli WcaJ protein reveals a new conserved configuration for the polyisoprenyl-phosphate hexose-1-phosphate transferase family.
    Furlong SE; Ford A; Albarnez-Rodriguez L; Valvano MA
    Sci Rep; 2015 Mar; 5():9178. PubMed ID: 25776537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide.
    Lehrer J; Vigeant KA; Tatar LD; Valvano MA
    J Bacteriol; 2007 Apr; 189(7):2618-28. PubMed ID: 17237164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved amino acid residues found in a predicted cytosolic domain of the lipopolysaccharide biosynthetic protein WecA are implicated in the recognition of UDP-N-acetylglucosamine.
    Amer AO; Valvano MA
    Microbiology (Reading); 2001 Nov; 147(Pt 11):3015-25. PubMed ID: 11700352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The C-terminal domain of the Salmonella enterica WbaP (UDP-galactose:Und-P galactose-1-phosphate transferase) is sufficient for catalytic activity and specificity for undecaprenyl monophosphate.
    Patel KB; Ciepichal E; Swiezewska E; Valvano MA
    Glycobiology; 2012 Jan; 22(1):116-22. PubMed ID: 21856724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The screening and expression of polysaccharide deacetylase from Caulobacter crescentus and its function analysis.
    Liu Q; Hao LF; Chen Y; Liu ZC; Xing WW; Zhang C; Fu WL; Xu DG
    Biotechnol Appl Biochem; 2023 Apr; 70(2):688-696. PubMed ID: 35932185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principal sigma subunit of the Caulobacter crescentus RNA polymerase.
    Malakooti J; Ely B
    J Bacteriol; 1995 Dec; 177(23):6854-60. PubMed ID: 7592478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2'-Fucosyllactose production in engineered Escherichia coli with deletion of waaF and wcaJ and overexpression of FucT2.
    Lee JW; Kwak S; Liu JJ; Yun EJ; Jin YS
    J Biotechnol; 2021 Nov; 340():30-38. PubMed ID: 34450187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interrupting Biosynthesis of O Antigen or the Lipopolysaccharide Core Produces Morphological Defects in Escherichia coli by Sequestering Undecaprenyl Phosphate.
    Jorgenson MA; Young KD
    J Bacteriol; 2016 Nov; 198(22):3070-3079. PubMed ID: 27573014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of a Caulobacter crescentus gene cluster involved in attachment of the holdfast to the cell.
    Kurtz HD; Smith J
    J Bacteriol; 1992 Feb; 174(3):687-94. PubMed ID: 1732204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of GO System Glycosylases to Mutation Prevention in Caulobacter crescentus.
    Fernández-Silva FS; Schulz ML; Alves IR; Freitas RR; da Rocha RP; Lopes-Kulishev CO; Medeiros MHG; Galhardo RS
    Environ Mol Mutagen; 2020 Feb; 61(2):246-255. PubMed ID: 31569269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease.
    Osterås M; Stotz A; Schmid Nuoffer S; Jenal U
    J Bacteriol; 1999 May; 181(10):3039-50. PubMed ID: 10322004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycosyltransferases involved in biosynthesis of the outer core region of Escherichia coli lipopolysaccharides exhibit broader substrate specificities than is predicted from lipopolysaccharide structures.
    Leipold MD; Vinogradov E; Whitfield C
    J Biol Chem; 2007 Sep; 282(37):26786-26792. PubMed ID: 17631498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirement of topoisomerase IV parC and parE genes for cell cycle progression and developmental regulation in Caulobacter crescentus.
    Ward D; Newton A
    Mol Microbiol; 1997 Dec; 26(5):897-910. PubMed ID: 9426128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of lipopolysaccharide O antigen synthesis genes required for attachment of the S-layer of Caulobacter crescentus.
    Awram P; Smit J
    Microbiology (Reading); 2001 Jun; 147(Pt 6):1451-1460. PubMed ID: 11390676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-Amino-4-deoxy-L-arabinose. Identification and function oF UDP-4-deoxy-4-formamido-L-arabinose.
    Breazeale SD; Ribeiro AA; McClerren AL; Raetz CR
    J Biol Chem; 2005 Apr; 280(14):14154-67. PubMed ID: 15695810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and analysis of duplicated rfbM and rfbK genes involved in the formation of GDP-mannose in Escherichia coli O9:K30 and participation of rfb genes in the synthesis of the group I K30 capsular polysaccharide.
    Jayaratne P; Bronner D; MacLachlan PR; Dodgson C; Kido N; Whitfield C
    J Bacteriol; 1994 Jun; 176(11):3126-39. PubMed ID: 7515042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.