BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 22408166)

  • 21. Divergent structure and regulatory mechanism of proline catabolic systems: characterization of the putAP proline catabolic operon of Pseudomonas aeruginosa PAO1 and its regulation by PruR, an AraC/XylS family protein.
    Nakada Y; Nishijyo T; Itoh Y
    J Bacteriol; 2002 Oct; 184(20):5633-40. PubMed ID: 12270821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expanded roles of lactate-sensing LldR in transcription regulation of the
    Anzai T; Kijima K; Fujimori M; Nakamoto S; Ishihama A; Shimada T
    Microb Genom; 2023 May; 9(5):. PubMed ID: 37219924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A d,l-lactate biosensor based on allosteric transcription factor LldR and amplified luminescent proximity homogeneous assay.
    Xiao D; Hu C; Xu X; Lü C; Wang Q; Zhang W; Gao C; Xu P; Wang X; Ma C
    Biosens Bioelectron; 2022 Sep; 211():114378. PubMed ID: 35617798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pseudomonas aeruginosa AlgZ, a ribbon-helix-helix DNA-binding protein, is essential for alginate synthesis and algD transcriptional activation.
    Baynham PJ; Brown AL; Hall LL; Wozniak DJ
    Mol Microbiol; 1999 Sep; 33(5):1069-80. PubMed ID: 10476040
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FleQ DNA Binding Consensus Sequence Revealed by Studies of FleQ-Dependent Regulation of Biofilm Gene Expression in Pseudomonas aeruginosa.
    Baraquet C; Harwood CS
    J Bacteriol; 2016 Jan; 198(1):178-86. PubMed ID: 26483521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integration host factor and sequences downstream of the Pseudomonas aeruginosa algD transcription start site are required for expression.
    Wozniak DJ
    J Bacteriol; 1994 Aug; 176(16):5068-76. PubMed ID: 8051019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry.
    Xiao G; He J; Rahme LG
    Microbiology (Reading); 2006 Jun; 152(Pt 6):1679-1686. PubMed ID: 16735731
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vfr Directly Activates exsA Transcription To Regulate Expression of the Pseudomonas aeruginosa Type III Secretion System.
    Marsden AE; Intile PJ; Schulmeyer KH; Simmons-Patterson ER; Urbanowski ML; Wolfgang MC; Yahr TL
    J Bacteriol; 2016 May; 198(9):1442-50. PubMed ID: 26929300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Pseudomonas aeruginosa Complement of Lactate Dehydrogenases Enables Use of d- and l-Lactate and Metabolic Cross-Feeding.
    Lin YC; Cornell WC; Jo J; Price-Whelan A; Dietrich LEP
    mBio; 2018 Sep; 9(5):. PubMed ID: 30206167
    [No Abstract]   [Full Text] [Related]  

  • 30. Involvement of the alginate algT gene and integration host factor in the regulation of the Pseudomonas aeruginosa algB gene.
    Wozniak DJ; Ohman DE
    J Bacteriol; 1993 Jul; 175(13):4145-53. PubMed ID: 8320229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptional activation of the bkd operon of Pseudomonas putida by BkdR.
    Madhusudhan KT; Hester KL; Friend V; Sokatch JR
    J Bacteriol; 1997 Mar; 179(6):1992-7. PubMed ID: 9068646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PilR, a transcriptional regulator of piliation in Pseudomonas aeruginosa, binds to a cis-acting sequence upstream of the pilin gene promoter.
    Jin S; Ishimoto KS; Lory S
    Mol Microbiol; 1994 Dec; 14(5):1049-57. PubMed ID: 7715443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular characterization of lysR-lysXE, gcdR-gcdHG and amaR-amaAB operons for lysine export and catabolism: a comprehensive lysine catabolic network in Pseudomonas aeruginosa PAO1.
    Madhuri Indurthi S; Chou HT; Lu CD
    Microbiology (Reading); 2016 May; 162(5):876-888. PubMed ID: 26967762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The NtrC family regulator AlgB, which controls alginate biosynthesis in mucoid Pseudomonas aeruginosa, binds directly to the algD promoter.
    Leech AJ; Sprinkle A; Wood L; Wozniak DJ; Ohman DE
    J Bacteriol; 2008 Jan; 190(2):581-9. PubMed ID: 17981963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding of Pseudomonas aeruginosa AlgZ to sites upstream of the algZ promoter leads to repression of transcription.
    Ramsey DM; Baynham PJ; Wozniak DJ
    J Bacteriol; 2005 Jul; 187(13):4430-43. PubMed ID: 15968052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Pseudomonas aeruginosa exotoxin A regulatory gene, ptxS: evidence for negative autoregulation.
    Swanson BL; Colmer JA; Hamood AN
    J Bacteriol; 1999 Aug; 181(16):4890-5. PubMed ID: 10438759
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
    Stansen C; Uy D; Delaunay S; Eggeling L; Goergen JL; Wendisch VF
    Appl Environ Microbiol; 2005 Oct; 71(10):5920-8. PubMed ID: 16204505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation and characterization of the dadRAX locus for D-amino acid catabolism in Pseudomonas aeruginosa PAO1.
    He W; Li C; Lu CD
    J Bacteriol; 2011 May; 193(9):2107-15. PubMed ID: 21378189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel target genes of PsrA transcriptional regulator of Pseudomonas aeruginosa.
    Kojic M; Jovcic B; Vindigni A; Odreman F; Venturi V
    FEMS Microbiol Lett; 2005 May; 246(2):175-81. PubMed ID: 15899403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rationally re-designed mutation of NAD-independent L-lactate dehydrogenase: high optical resolution of racemic mandelic acid by the engineered Escherichia coli.
    Jiang T; Gao C; Dou P; Ma C; Kong J; Xu P
    Microb Cell Fact; 2012 Nov; 11():151. PubMed ID: 23176608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.