BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 22408166)

  • 61. Host-Derived Metabolites Modulate Transcription of
    Gillis CC; Winter MG; Chanin RB; Zhu W; Spiga L; Winter SE
    Infect Immun; 2019 Apr; 87(4):. PubMed ID: 30617205
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa.
    Nishijyo T; Haas D; Itoh Y
    Mol Microbiol; 2001 May; 40(4):917-31. PubMed ID: 11401699
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [A novel transcriptional regulator of the phzA1 operon in Pseudomonas aeruginosa].
    Liping K; Haihua L; Zhaolin D; Kangmin D; Lixin S
    Wei Sheng Wu Xue Bao; 2008 Sep; 48(9):1154-9. PubMed ID: 19062637
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characterization of the fatty acid-responsive transcription factor FadR. Biochemical and genetic analyses of the native conformation and functional domains.
    Raman N; Black PN; DiRusso CC
    J Biol Chem; 1997 Dec; 272(49):30645-50. PubMed ID: 9388199
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characterization of molecular mechanisms controlling fabAB transcription in Pseudomonas aeruginosa.
    Schweizer HP; Choi KH
    PLoS One; 2012; 7(10):e45646. PubMed ID: 23056212
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Three overlapping lct genes involved in L-lactate utilization by Escherichia coli.
    Dong JM; Taylor JS; Latour DJ; Iuchi S; Lin EC
    J Bacteriol; 1993 Oct; 175(20):6671-8. PubMed ID: 8407843
    [TBL] [Abstract][Full Text] [Related]  

  • 67. PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa.
    Hobbs M; Collie ES; Free PD; Livingston SP; Mattick JS
    Mol Microbiol; 1993 Mar; 7(5):669-82. PubMed ID: 8097014
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Autoregulation of the Pseudomonas aeruginosa protein PtxS occurs through a specific operator site within the ptxS upstream region.
    Swanson BL; Hamood AN
    J Bacteriol; 2000 Aug; 182(15):4366-71. PubMed ID: 10894751
    [TBL] [Abstract][Full Text] [Related]  

  • 69. PhhR, a divergently transcribed activator of the phenylalanine hydroxylase gene cluster of Pseudomonas aeruginosa.
    Song J; Jensen RA
    Mol Microbiol; 1996 Nov; 22(3):497-507. PubMed ID: 8939433
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa.
    Dasgupta N; Wolfgang MC; Goodman AL; Arora SK; Jyot J; Lory S; Ramphal R
    Mol Microbiol; 2003 Nov; 50(3):809-24. PubMed ID: 14617143
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The Pseudomonas aeruginosa global regulator MvaT specifically binds to the ptxS upstream region and enhances ptxS expression.
    Westfall LW; Luna AM; Francisco MS; Diggle SP; Worrall KE; Williams P; Cámara M; Hamood AN
    Microbiology (Reading); 2004 Nov; 150(Pt 11):3797-3806. PubMed ID: 15528665
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Molecular characterization and regulation of an operon encoding a system for transport of arginine and ornithine and the ArgR regulatory protein in Pseudomonas aeruginosa.
    Nishijyo T; Park SM; Lu CD; Itoh Y; Abdelal AT
    J Bacteriol; 1998 Nov; 180(21):5559-66. PubMed ID: 9791103
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa.
    Ochsner UA; Johnson Z; Vasil ML
    Microbiology (Reading); 2000 Jan; 146 ( Pt 1)():185-198. PubMed ID: 10658665
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transcriptional regulation of the terephthalate catabolism operon in Comamonas sp. strain E6.
    Kasai D; Kitajima M; Fukuda M; Masai E
    Appl Environ Microbiol; 2010 Sep; 76(18):6047-55. PubMed ID: 20656871
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Coexistence of two d-lactate-utilizing systems in Pseudomonas putida KT2440.
    Zhang Y; Jiang T; Sheng B; Long Y; Gao C; Ma C; Xu P
    Environ Microbiol Rep; 2016 Oct; 8(5):699-707. PubMed ID: 27264531
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Epoxide-mediated CifR repression of cif gene expression utilizes two binding sites in Pseudomonas aeruginosa.
    Ballok AE; Bahl CD; Dolben EL; Lindsay AK; St Laurent JD; Hogan DA; Madden DR; O'Toole GA
    J Bacteriol; 2012 Oct; 194(19):5315-24. PubMed ID: 22843844
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa.
    Pessi G; Haas D
    J Bacteriol; 2000 Dec; 182(24):6940-9. PubMed ID: 11092854
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Transcriptome profiling defines a novel regulon modulated by the LysR-type transcriptional regulator MexT in Pseudomonas aeruginosa.
    Tian ZX; Fargier E; Mac Aogáin M; Adams C; Wang YP; O'Gara F
    Nucleic Acids Res; 2009 Dec; 37(22):7546-59. PubMed ID: 19846594
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Multiple lactate dehydrogenase activities of the rumen bacterium Selenomonas ruminantium.
    Gilmour M; Flint HJ; Mitchell WJ
    Microbiology (Reading); 1994 Aug; 140 ( Pt 8)():2077-84. PubMed ID: 7921257
    [TBL] [Abstract][Full Text] [Related]  

  • 80. LurR is a regulator of the central lactate oxidation pathway in sulfate-reducing Desulfovibrio species.
    Rajeev L; Luning EG; Zane GM; Juba TR; Kazakov AE; Novichkov PS; Wall JD; Mukhopadhyay A
    PLoS One; 2019; 14(4):e0214960. PubMed ID: 30964892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.