These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
893 related articles for article (PubMed ID: 22408430)
1. The mTOR signalling pathway in human cancer. Pópulo H; Lopes JM; Soares P Int J Mol Sci; 2012; 13(2):1886-1918. PubMed ID: 22408430 [TBL] [Abstract][Full Text] [Related]
2. Therapeutic targeting of the mTOR-signalling pathway in cancer: benefits and limitations. Moschetta M; Reale A; Marasco C; Vacca A; Carratù MR Br J Pharmacol; 2014 Aug; 171(16):3801-13. PubMed ID: 24780124 [TBL] [Abstract][Full Text] [Related]
3. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Wang B; Jie Z; Joo D; Ordureau A; Liu P; Gan W; Guo J; Zhang J; North BJ; Dai X; Cheng X; Bian X; Zhang L; Harper JW; Sun SC; Wei W Nature; 2017 May; 545(7654):365-369. PubMed ID: 28489822 [TBL] [Abstract][Full Text] [Related]
4. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes. Jhanwar-Uniyal M; Gillick JL; Neil J; Tobias M; Thwing ZE; Murali R Adv Biol Regul; 2015 Jan; 57():64-74. PubMed ID: 25442674 [TBL] [Abstract][Full Text] [Related]
5. Disentangling the signaling pathways of mTOR complexes, mTORC1 and mTORC2, as a therapeutic target in glioblastoma. Jhanwar-Uniyal M; Dominguez JF; Mohan AL; Tobias ME; Gandhi CD Adv Biol Regul; 2022 Jan; 83():100854. PubMed ID: 34996736 [TBL] [Abstract][Full Text] [Related]
6. Autoregulation of the mechanistic target of rapamycin (mTOR) complex 2 integrity is controlled by an ATP-dependent mechanism. Chen CH; Kiyan V; Zhylkibayev AA; Kazyken D; Bulgakova O; Page KE; Bersimbaev RI; Spooner E; Sarbassov DD J Biol Chem; 2013 Sep; 288(38):27019-27030. PubMed ID: 23928304 [TBL] [Abstract][Full Text] [Related]
7. Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship. Jhanwar-Uniyal M; Wainwright JV; Mohan AL; Tobias ME; Murali R; Gandhi CD; Schmidt MH Adv Biol Regul; 2019 May; 72():51-62. PubMed ID: 31010692 [TBL] [Abstract][Full Text] [Related]
8. Alkaline intracellular pH (pHi) increases PI3K activity to promote mTORC1 and mTORC2 signaling and function during growth factor limitation. Kazyken D; Lentz SI; Wadley M; Fingar DC J Biol Chem; 2023 Sep; 299(9):105097. PubMed ID: 37507012 [TBL] [Abstract][Full Text] [Related]
9. Loss of mTOR signaling affects cone function, cone structure and expression of cone specific proteins without affecting cone survival. Ma S; Venkatesh A; Langellotto F; Le YZ; Hall MN; Rüegg MA; Punzo C Exp Eye Res; 2015 Jun; 135():1-13. PubMed ID: 25887293 [TBL] [Abstract][Full Text] [Related]
10. RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells. Gordon BS; Kazi AA; Coleman CS; Dennis MD; Chau V; Jefferson LS; Kimball SR Cell Signal; 2014 Mar; 26(3):461-7. PubMed ID: 24316235 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of mTORC1 by SU6656, the selective Src kinase inhibitor, is not accompanied by activation of Akt/PKB signalling in melanoma cells. Ondrušová L; Réda J; Záková P; Tuháčková Z Folia Biol (Praha); 2013; 59(4):162-7. PubMed ID: 24093774 [TBL] [Abstract][Full Text] [Related]
12. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. Feldman ME; Apsel B; Uotila A; Loewith R; Knight ZA; Ruggero D; Shokat KM PLoS Biol; 2009 Feb; 7(2):e38. PubMed ID: 19209957 [TBL] [Abstract][Full Text] [Related]
13. A comparison of Ku0063794, a dual mTORC1 and mTORC2 inhibitor, and temsirolimus in preclinical renal cell carcinoma models. Zhang H; Berel D; Wang Y; Li P; Bhowmick NA; Figlin RA; Kim HL PLoS One; 2013; 8(1):e54918. PubMed ID: 23349989 [TBL] [Abstract][Full Text] [Related]
14. Targeted Inhibition of Rictor/mTORC2 in Cancer Treatment: A New Era after Rapamycin. Zou Z; Chen J; Yang J; Bai X Curr Cancer Drug Targets; 2016; 16(4):288-304. PubMed ID: 26563881 [TBL] [Abstract][Full Text] [Related]
15. Small molecule H89 renders the phosphorylation of S6K1 and AKT resistant to mTOR inhibitors. Melick CH; Jewell JL Biochem J; 2020 May; 477(10):1847-1863. PubMed ID: 32347294 [TBL] [Abstract][Full Text] [Related]
17. Impact of dual mTORC1/2 mTOR kinase inhibitor AZD8055 on acquired endocrine resistance in breast cancer in vitro. Jordan NJ; Dutkowski CM; Barrow D; Mottram HJ; Hutcheson IR; Nicholson RI; Guichard SM; Gee JM Breast Cancer Res; 2014 Jan; 16(1):R12. PubMed ID: 24457069 [TBL] [Abstract][Full Text] [Related]
18. Differential effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway in acute lymphoblastic leukemia. Badura S; Tesanovic T; Pfeifer H; Wystub S; Nijmeijer BA; Liebermann M; Falkenburg JH; Ruthardt M; Ottmann OG PLoS One; 2013; 8(11):e80070. PubMed ID: 24244612 [TBL] [Abstract][Full Text] [Related]
19. The expanding role of mTOR in cancer cell growth and proliferation. Cargnello M; Tcherkezian J; Roux PP Mutagenesis; 2015 Mar; 30(2):169-76. PubMed ID: 25688110 [TBL] [Abstract][Full Text] [Related]
20. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin. Bhagwat SV; Gokhale PC; Crew AP; Cooke A; Yao Y; Mantis C; Kahler J; Workman J; Bittner M; Dudkin L; Epstein DM; Gibson NW; Wild R; Arnold LD; Houghton PJ; Pachter JA Mol Cancer Ther; 2011 Aug; 10(8):1394-406. PubMed ID: 21673091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]